Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Hartmann
4
68 kgLesueur
5
74 kgAmberg
7
72 kgZimmermann
9
72 kgBlattmann
11
68 kgStettler
14
81 kgMollo
15
62 kgLuisoni
16
71 kgMartin
17
69 kgBonduel
18
74 kgRinaldi
19
71 kgEgli
22
72 kgBüchi
23
68 kgFunke
24
65 kgLevel
25
64 kgNeuens
26
76 kgBula
29
71 kgKijewski
30
75 kgKutschbach
32
70 kgHeimann
33
73 kg
4
68 kgLesueur
5
74 kgAmberg
7
72 kgZimmermann
9
72 kgBlattmann
11
68 kgStettler
14
81 kgMollo
15
62 kgLuisoni
16
71 kgMartin
17
69 kgBonduel
18
74 kgRinaldi
19
71 kgEgli
22
72 kgBüchi
23
68 kgFunke
24
65 kgLevel
25
64 kgNeuens
26
76 kgBula
29
71 kgKijewski
30
75 kgKutschbach
32
70 kgHeimann
33
73 kg
Weight (KG) →
Result →
81
62
4
33
# | Rider | Weight (KG) |
---|---|---|
4 | HARTMANN Fritz | 68 |
5 | LESUEUR Raoul | 74 |
7 | AMBERG Leo | 72 |
9 | ZIMMERMANN Robert | 72 |
11 | BLATTMANN Walter | 68 |
14 | STETTLER Kurt | 81 |
15 | MOLLO Enrico | 62 |
16 | LUISONI Luigi | 71 |
17 | MARTIN Hans | 69 |
18 | BONDUEL Frans | 74 |
19 | RINALDI Gaspard | 71 |
22 | EGLI Paul | 72 |
23 | BÜCHI Albert | 68 |
24 | FUNKE Fritz | 65 |
25 | LEVEL Léon | 64 |
26 | NEUENS François | 76 |
29 | BULA Alfred | 71 |
30 | KIJEWSKI Emil | 75 |
32 | KUTSCHBACH Willi | 70 |
33 | HEIMANN Theo | 73 |