Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Kijewski
1
75 kgMartin
2
69 kgFunke
3
65 kgAmberg
5
72 kgBonduel
6
74 kgZimmermann
9
72 kgEgli
11
72 kgMollo
12
62 kgHartmann
13
68 kgBlattmann
16
68 kgStettler
17
81 kgLevel
20
64 kgBula
22
71 kgRinaldi
24
71 kgLesueur
25
74 kgBüchi
27
68 kgNeuens
29
76 kgHeimann
31
73 kgKutschbach
32
70 kg
1
75 kgMartin
2
69 kgFunke
3
65 kgAmberg
5
72 kgBonduel
6
74 kgZimmermann
9
72 kgEgli
11
72 kgMollo
12
62 kgHartmann
13
68 kgBlattmann
16
68 kgStettler
17
81 kgLevel
20
64 kgBula
22
71 kgRinaldi
24
71 kgLesueur
25
74 kgBüchi
27
68 kgNeuens
29
76 kgHeimann
31
73 kgKutschbach
32
70 kg
Weight (KG) →
Result →
81
62
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | KIJEWSKI Emil | 75 |
2 | MARTIN Hans | 69 |
3 | FUNKE Fritz | 65 |
5 | AMBERG Leo | 72 |
6 | BONDUEL Frans | 74 |
9 | ZIMMERMANN Robert | 72 |
11 | EGLI Paul | 72 |
12 | MOLLO Enrico | 62 |
13 | HARTMANN Fritz | 68 |
16 | BLATTMANN Walter | 68 |
17 | STETTLER Kurt | 81 |
20 | LEVEL Léon | 64 |
22 | BULA Alfred | 71 |
24 | RINALDI Gaspard | 71 |
25 | LESUEUR Raoul | 74 |
27 | BÜCHI Albert | 68 |
29 | NEUENS François | 76 |
31 | HEIMANN Theo | 73 |
32 | KUTSCHBACH Willi | 70 |