Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Valetti
1
74 kgMersch
2
73 kgAmberg
5
72 kgZimmermann
6
72 kgHendrickx
9
70 kgHartmann
11
68 kgPerret
12
79 kgLambrichs
13
67 kgBlattmann
14
68 kgEgli
17
72 kgVlaemynck
18
63 kgRomanatti
21
75 kgBula
22
71 kgVietto
25
67 kgWeber
26
75 kgNeuens
27
76 kgMaestranzi
31
67 kgErne
32
70 kgUmbenhauer
33
64 kgWeckerling
34
64 kgBettini
35
60 kgStettler
36
81 kg
1
74 kgMersch
2
73 kgAmberg
5
72 kgZimmermann
6
72 kgHendrickx
9
70 kgHartmann
11
68 kgPerret
12
79 kgLambrichs
13
67 kgBlattmann
14
68 kgEgli
17
72 kgVlaemynck
18
63 kgRomanatti
21
75 kgBula
22
71 kgVietto
25
67 kgWeber
26
75 kgNeuens
27
76 kgMaestranzi
31
67 kgErne
32
70 kgUmbenhauer
33
64 kgWeckerling
34
64 kgBettini
35
60 kgStettler
36
81 kg
Weight (KG) →
Result →
81
60
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | VALETTI Giovanni | 74 |
2 | MERSCH Arsène | 73 |
5 | AMBERG Leo | 72 |
6 | ZIMMERMANN Robert | 72 |
9 | HENDRICKX Albert | 70 |
11 | HARTMANN Fritz | 68 |
12 | PERRET Théo | 79 |
13 | LAMBRICHS Jan | 67 |
14 | BLATTMANN Walter | 68 |
17 | EGLI Paul | 72 |
18 | VLAEMYNCK Lucien | 63 |
21 | ROMANATTI Carlo | 75 |
22 | BULA Alfred | 71 |
25 | VIETTO René | 67 |
26 | WEBER Gottlieb | 75 |
27 | NEUENS François | 76 |
31 | MAESTRANZI Ettore | 67 |
32 | ERNE August | 70 |
33 | UMBENHAUER Georg | 64 |
34 | WECKERLING Otto | 64 |
35 | BETTINI Decimo | 60 |
36 | STETTLER Kurt | 81 |