Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 17 * weight - 232
This means that on average for every extra kilogram weight a rider loses 17 positions in the result.
Winnen
6
60 kgVilamajo
990
70 kgFernández
990
68 kgZoetemelk
990
68 kgvan den Hoek
990
77 kgGavazzi
990
67 kgDigerud
990
77 kgTrevorrow
990
67 kgde Rooij
990
69 kgSutter
990
70 kgDemierre
990
70 kgThaler
990
60 kgSchepers
990
60 kgvan der Poel
990
70 kgDe Vlaeminck
990
74 kgPollentier
990
62 kgDe Wolf
990
75 kg
6
60 kgVilamajo
990
70 kgFernández
990
68 kgZoetemelk
990
68 kgvan den Hoek
990
77 kgGavazzi
990
67 kgDigerud
990
77 kgTrevorrow
990
67 kgde Rooij
990
69 kgSutter
990
70 kgDemierre
990
70 kgThaler
990
60 kgSchepers
990
60 kgvan der Poel
990
70 kgDe Vlaeminck
990
74 kgPollentier
990
62 kgDe Wolf
990
75 kg
Weight (KG) →
Result →
77
60
6
990
# | Rider | Weight (KG) |
---|---|---|
6 | WINNEN Peter | 60 |
990 | VILAMAJO Jaime | 70 |
990 | FERNÁNDEZ Juan | 68 |
990 | ZOETEMELK Joop | 68 |
990 | VAN DEN HOEK Aad | 77 |
990 | GAVAZZI Pierino | 67 |
990 | DIGERUD Geir | 77 |
990 | TREVORROW John | 67 |
990 | DE ROOIJ Theo | 69 |
990 | SUTTER Ueli | 70 |
990 | DEMIERRE Serge | 70 |
990 | THALER Klaus-Peter | 60 |
990 | SCHEPERS Eddy | 60 |
990 | VAN DER POEL Adrie | 70 |
990 | DE VLAEMINCK Roger | 74 |
990 | POLLENTIER Michel | 62 |
990 | DE WOLF Fons | 75 |