Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -5.2 * weight + 1174
This means that on average for every extra kilogram weight a rider loses -5.2 positions in the result.
De Vlaeminck
1
74 kgTrevorrow
2
67 kgGavazzi
3
67 kgVilamajo
990
70 kgFernández
990
68 kgvan den Hoek
990
77 kgZoetemelk
990
68 kgDigerud
990
77 kgWinnen
990
60 kgde Rooij
990
69 kgSutter
990
70 kgDemierre
990
70 kgThaler
990
60 kgvan der Poel
990
70 kgSchepers
990
60 kgPollentier
990
62 kgDe Wolf
990
75 kg
1
74 kgTrevorrow
2
67 kgGavazzi
3
67 kgVilamajo
990
70 kgFernández
990
68 kgvan den Hoek
990
77 kgZoetemelk
990
68 kgDigerud
990
77 kgWinnen
990
60 kgde Rooij
990
69 kgSutter
990
70 kgDemierre
990
70 kgThaler
990
60 kgvan der Poel
990
70 kgSchepers
990
60 kgPollentier
990
62 kgDe Wolf
990
75 kg
Weight (KG) →
Result →
77
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | DE VLAEMINCK Roger | 74 |
2 | TREVORROW John | 67 |
3 | GAVAZZI Pierino | 67 |
990 | VILAMAJO Jaime | 70 |
990 | FERNÁNDEZ Juan | 68 |
990 | VAN DEN HOEK Aad | 77 |
990 | ZOETEMELK Joop | 68 |
990 | DIGERUD Geir | 77 |
990 | WINNEN Peter | 60 |
990 | DE ROOIJ Theo | 69 |
990 | SUTTER Ueli | 70 |
990 | DEMIERRE Serge | 70 |
990 | THALER Klaus-Peter | 60 |
990 | VAN DER POEL Adrie | 70 |
990 | SCHEPERS Eddy | 60 |
990 | POLLENTIER Michel | 62 |
990 | DE WOLF Fons | 75 |