Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -24.3 * weight + 2537
This means that on average for every extra kilogram weight a rider loses -24.3 positions in the result.
De Vlaeminck
1
74 kgDe Wolf
4
75 kgVilamajo
990
70 kgFernández
990
68 kgvan den Hoek
990
77 kgZoetemelk
990
68 kgDigerud
990
77 kgGavazzi
990
67 kgTrevorrow
990
67 kgWinnen
990
60 kgde Rooij
990
69 kgDemierre
990
70 kgSutter
990
70 kgThaler
990
60 kgSchepers
990
60 kgvan der Poel
990
70 kgPollentier
990
62 kg
1
74 kgDe Wolf
4
75 kgVilamajo
990
70 kgFernández
990
68 kgvan den Hoek
990
77 kgZoetemelk
990
68 kgDigerud
990
77 kgGavazzi
990
67 kgTrevorrow
990
67 kgWinnen
990
60 kgde Rooij
990
69 kgDemierre
990
70 kgSutter
990
70 kgThaler
990
60 kgSchepers
990
60 kgvan der Poel
990
70 kgPollentier
990
62 kg
Weight (KG) →
Result →
77
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | DE VLAEMINCK Roger | 74 |
4 | DE WOLF Fons | 75 |
990 | VILAMAJO Jaime | 70 |
990 | FERNÁNDEZ Juan | 68 |
990 | VAN DEN HOEK Aad | 77 |
990 | ZOETEMELK Joop | 68 |
990 | DIGERUD Geir | 77 |
990 | GAVAZZI Pierino | 67 |
990 | TREVORROW John | 67 |
990 | WINNEN Peter | 60 |
990 | DE ROOIJ Theo | 69 |
990 | DEMIERRE Serge | 70 |
990 | SUTTER Ueli | 70 |
990 | THALER Klaus-Peter | 60 |
990 | SCHEPERS Eddy | 60 |
990 | VAN DER POEL Adrie | 70 |
990 | POLLENTIER Michel | 62 |