Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 896
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Gavazzi
2
67 kgFernández
4
68 kgDemierre
6
70 kgVilamajo
990
70 kgvan den Hoek
990
77 kgZoetemelk
990
68 kgDigerud
990
77 kgTrevorrow
990
67 kgde Rooij
990
69 kgWinnen
990
60 kgSutter
990
70 kgThaler
990
60 kgSchepers
990
60 kgvan der Poel
990
70 kgDe Wolf
990
75 kgPollentier
990
62 kg
2
67 kgFernández
4
68 kgDemierre
6
70 kgVilamajo
990
70 kgvan den Hoek
990
77 kgZoetemelk
990
68 kgDigerud
990
77 kgTrevorrow
990
67 kgde Rooij
990
69 kgWinnen
990
60 kgSutter
990
70 kgThaler
990
60 kgSchepers
990
60 kgvan der Poel
990
70 kgDe Wolf
990
75 kgPollentier
990
62 kg
Weight (KG) →
Result →
77
60
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | GAVAZZI Pierino | 67 |
4 | FERNÁNDEZ Juan | 68 |
6 | DEMIERRE Serge | 70 |
990 | VILAMAJO Jaime | 70 |
990 | VAN DEN HOEK Aad | 77 |
990 | ZOETEMELK Joop | 68 |
990 | DIGERUD Geir | 77 |
990 | TREVORROW John | 67 |
990 | DE ROOIJ Theo | 69 |
990 | WINNEN Peter | 60 |
990 | SUTTER Ueli | 70 |
990 | THALER Klaus-Peter | 60 |
990 | SCHEPERS Eddy | 60 |
990 | VAN DER POEL Adrie | 70 |
990 | DE WOLF Fons | 75 |
990 | POLLENTIER Michel | 62 |