Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 776
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
LeMond
6
67 kgKelly
8
77 kgGianetti
10
62 kgBölts
15
73 kgJaskuła
990
76 kgMadouas
990
70 kgBreukink
990
70 kgNevens
990
58 kgArroyo
990
59 kgSkibby
990
70 kgJärmann
990
73 kgBauer
990
72 kgArntz
990
70 kgBortolami
990
73 kgDernies
990
75 kgCenghialta
990
73 kgRichard
990
67 kgElli
990
71 kgYates
990
74 kgde Rooij
990
69 kgBramati
990
72 kgSunderland
990
65 kg
6
67 kgKelly
8
77 kgGianetti
10
62 kgBölts
15
73 kgJaskuła
990
76 kgMadouas
990
70 kgBreukink
990
70 kgNevens
990
58 kgArroyo
990
59 kgSkibby
990
70 kgJärmann
990
73 kgBauer
990
72 kgArntz
990
70 kgBortolami
990
73 kgDernies
990
75 kgCenghialta
990
73 kgRichard
990
67 kgElli
990
71 kgYates
990
74 kgde Rooij
990
69 kgBramati
990
72 kgSunderland
990
65 kg
Weight (KG) →
Result →
77
58
6
990
# | Rider | Weight (KG) |
---|---|---|
6 | LEMOND Greg | 67 |
8 | KELLY Sean | 77 |
10 | GIANETTI Mauro | 62 |
15 | BÖLTS Udo | 73 |
990 | JASKUŁA Zenon | 76 |
990 | MADOUAS Laurent | 70 |
990 | BREUKINK Erik | 70 |
990 | NEVENS Jan | 58 |
990 | ARROYO Miguel | 59 |
990 | SKIBBY Jesper | 70 |
990 | JÄRMANN Rolf | 73 |
990 | BAUER Steve | 72 |
990 | ARNTZ Marcel | 70 |
990 | BORTOLAMI Gianluca | 73 |
990 | DERNIES Michel | 75 |
990 | CENGHIALTA Bruno | 73 |
990 | RICHARD Pascal | 67 |
990 | ELLI Alberto | 71 |
990 | YATES Sean | 74 |
990 | DE ROOIJ Theo | 69 |
990 | BRAMATI Davide | 72 |
990 | SUNDERLAND Scott | 65 |