Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 15.2 * weight - 242
This means that on average for every extra kilogram weight a rider loses 15.2 positions in the result.
Argentin
1
66 kgDernies
3
75 kgArroyo
5
59 kgArntz
10
70 kgKelly
990
77 kgJaskuła
990
76 kgMadouas
990
70 kgLeMond
990
67 kgBreukink
990
70 kgNevens
990
58 kgBölts
990
73 kgSkibby
990
70 kgGianetti
990
62 kgJärmann
990
73 kgBauer
990
72 kgBortolami
990
73 kgCenghialta
990
73 kgRichard
990
67 kgElli
990
71 kgYates
990
74 kgde Rooij
990
69 kgBramati
990
72 kgSunderland
990
65 kg
1
66 kgDernies
3
75 kgArroyo
5
59 kgArntz
10
70 kgKelly
990
77 kgJaskuła
990
76 kgMadouas
990
70 kgLeMond
990
67 kgBreukink
990
70 kgNevens
990
58 kgBölts
990
73 kgSkibby
990
70 kgGianetti
990
62 kgJärmann
990
73 kgBauer
990
72 kgBortolami
990
73 kgCenghialta
990
73 kgRichard
990
67 kgElli
990
71 kgYates
990
74 kgde Rooij
990
69 kgBramati
990
72 kgSunderland
990
65 kg
Weight (KG) →
Result →
77
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | ARGENTIN Moreno | 66 |
3 | DERNIES Michel | 75 |
5 | ARROYO Miguel | 59 |
10 | ARNTZ Marcel | 70 |
990 | KELLY Sean | 77 |
990 | JASKUŁA Zenon | 76 |
990 | MADOUAS Laurent | 70 |
990 | LEMOND Greg | 67 |
990 | BREUKINK Erik | 70 |
990 | NEVENS Jan | 58 |
990 | BÖLTS Udo | 73 |
990 | SKIBBY Jesper | 70 |
990 | GIANETTI Mauro | 62 |
990 | JÄRMANN Rolf | 73 |
990 | BAUER Steve | 72 |
990 | BORTOLAMI Gianluca | 73 |
990 | CENGHIALTA Bruno | 73 |
990 | RICHARD Pascal | 67 |
990 | ELLI Alberto | 71 |
990 | YATES Sean | 74 |
990 | DE ROOIJ Theo | 69 |
990 | BRAMATI Davide | 72 |
990 | SUNDERLAND Scott | 65 |