Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Rodriguez
1
68 kgBelli
2
64 kgTeutenberg
3
66 kgStrauss
4
69 kgZberg
5
69 kgMazzoleni
6
67 kgGarzelli
7
62 kgHervé
8
62 kgBelohvoščiks
9
70 kgUllrich
10
73 kgCasagrande
11
64 kgHaselbacher
13
69 kgCamenzind
14
62 kgFrigo
15
66 kgZanetti
17
66 kgGarate
18
62 kgBoogerd
19
62 kgNazon
20
74 kg
1
68 kgBelli
2
64 kgTeutenberg
3
66 kgStrauss
4
69 kgZberg
5
69 kgMazzoleni
6
67 kgGarzelli
7
62 kgHervé
8
62 kgBelohvoščiks
9
70 kgUllrich
10
73 kgCasagrande
11
64 kgHaselbacher
13
69 kgCamenzind
14
62 kgFrigo
15
66 kgZanetti
17
66 kgGarate
18
62 kgBoogerd
19
62 kgNazon
20
74 kg
Weight (KG) →
Result →
74
62
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | RODRIGUEZ Fred | 68 |
2 | BELLI Wladimir | 64 |
3 | TEUTENBERG Sven | 66 |
4 | STRAUSS Marcel | 69 |
5 | ZBERG Markus | 69 |
6 | MAZZOLENI Eddy | 67 |
7 | GARZELLI Stefano | 62 |
8 | HERVÉ Pascal | 62 |
9 | BELOHVOŠČIKS Raivis | 70 |
10 | ULLRICH Jan | 73 |
11 | CASAGRANDE Francesco | 64 |
13 | HASELBACHER René | 69 |
14 | CAMENZIND Oscar | 62 |
15 | FRIGO Dario | 66 |
17 | ZANETTI Mauro | 66 |
18 | GARATE Juan Manuel | 62 |
19 | BOOGERD Michael | 62 |
20 | NAZON Jean-Patrick | 74 |