Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Teutenberg
2
66 kgRodriguez
3
68 kgZülle
4
72 kgMartín Perdiguero
5
63 kgDi Grande
6
58 kgRebellin
7
63 kgBennati
8
71 kgDufaux
9
60 kgSacchi
10
68 kgFlickinger
11
78 kgZberg
12
69 kgSteinhauser
13
72 kgZabel
14
69 kgPeschel
15
72 kgSavoldelli
17
72 kgNazon
18
74 kgJulich
19
68 kgCasagrande
20
64 kg
2
66 kgRodriguez
3
68 kgZülle
4
72 kgMartín Perdiguero
5
63 kgDi Grande
6
58 kgRebellin
7
63 kgBennati
8
71 kgDufaux
9
60 kgSacchi
10
68 kgFlickinger
11
78 kgZberg
12
69 kgSteinhauser
13
72 kgZabel
14
69 kgPeschel
15
72 kgSavoldelli
17
72 kgNazon
18
74 kgJulich
19
68 kgCasagrande
20
64 kg
Weight (KG) →
Result →
78
58
2
20
# | Rider | Weight (KG) |
---|---|---|
2 | TEUTENBERG Sven | 66 |
3 | RODRIGUEZ Fred | 68 |
4 | ZÜLLE Alex | 72 |
5 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
6 | DI GRANDE Giuseppe | 58 |
7 | REBELLIN Davide | 63 |
8 | BENNATI Daniele | 71 |
9 | DUFAUX Laurent | 60 |
10 | SACCHI Fabio | 68 |
11 | FLICKINGER Andy | 78 |
12 | ZBERG Markus | 69 |
13 | STEINHAUSER Tobias | 72 |
14 | ZABEL Erik | 69 |
15 | PESCHEL Uwe | 72 |
17 | SAVOLDELLI Paolo | 72 |
18 | NAZON Jean-Patrick | 74 |
19 | JULICH Bobby | 68 |
20 | CASAGRANDE Francesco | 64 |