Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Vinokourov
1
68 kgCancellara
2
80 kgMcGee
3
72 kgPereiro
4
67 kgIvanov
5
73 kgMartín Perdiguero
6
63 kgFrigo
7
66 kgZülle
8
72 kgCommesso
9
66 kgDomínguez
10
64 kgCasagrande
11
64 kgAus
12
75 kgBelli
13
64 kgSteinhauser
14
72 kgLang
15
77 kgMoos
16
64 kgGuerini
17
65 kgLoder
18
62 kgO'Grady
19
73 kgHiekmann
20
70 kg
1
68 kgCancellara
2
80 kgMcGee
3
72 kgPereiro
4
67 kgIvanov
5
73 kgMartín Perdiguero
6
63 kgFrigo
7
66 kgZülle
8
72 kgCommesso
9
66 kgDomínguez
10
64 kgCasagrande
11
64 kgAus
12
75 kgBelli
13
64 kgSteinhauser
14
72 kgLang
15
77 kgMoos
16
64 kgGuerini
17
65 kgLoder
18
62 kgO'Grady
19
73 kgHiekmann
20
70 kg
Weight (KG) →
Result →
80
62
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VINOKOUROV Alexandre | 68 |
2 | CANCELLARA Fabian | 80 |
3 | MCGEE Bradley | 72 |
4 | PEREIRO Óscar | 67 |
5 | IVANOV Sergei | 73 |
6 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
7 | FRIGO Dario | 66 |
8 | ZÜLLE Alex | 72 |
9 | COMMESSO Salvatore | 66 |
10 | DOMÍNGUEZ Juan Carlos | 64 |
11 | CASAGRANDE Francesco | 64 |
12 | AUS Lauri | 75 |
13 | BELLI Wladimir | 64 |
14 | STEINHAUSER Tobias | 72 |
15 | LANG Sebastian | 77 |
16 | MOOS Alexandre | 64 |
17 | GUERINI Giuseppe | 65 |
18 | LODER Thierry | 62 |
19 | O'GRADY Stuart | 73 |
20 | HIEKMANN Torsten | 70 |