Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Bennati
1
71 kgBoonen
2
82 kgLequatre
4
64 kgFreire
5
63 kgZabel
6
69 kgUsov
7
63 kgClerc
8
71 kgDavis
9
73 kgHinault
10
63 kgMarkov
11
80 kgPagliarini
12
68 kgGálvez
13
68 kgSchröder
14
64 kgMcGee
15
72 kgElmiger
16
73 kgHaselbacher
17
69 kgEisel
18
74 kgPérez
20
65 kgde la Fuente
21
67 kgRast
22
80 kgPaolini
23
66 kgBileka
24
65 kgKroon
25
67 kgBallan
26
73 kg
1
71 kgBoonen
2
82 kgLequatre
4
64 kgFreire
5
63 kgZabel
6
69 kgUsov
7
63 kgClerc
8
71 kgDavis
9
73 kgHinault
10
63 kgMarkov
11
80 kgPagliarini
12
68 kgGálvez
13
68 kgSchröder
14
64 kgMcGee
15
72 kgElmiger
16
73 kgHaselbacher
17
69 kgEisel
18
74 kgPérez
20
65 kgde la Fuente
21
67 kgRast
22
80 kgPaolini
23
66 kgBileka
24
65 kgKroon
25
67 kgBallan
26
73 kg
Weight (KG) →
Result →
82
63
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BENNATI Daniele | 71 |
2 | BOONEN Tom | 82 |
4 | LEQUATRE Geoffroy | 64 |
5 | FREIRE Óscar | 63 |
6 | ZABEL Erik | 69 |
7 | USOV Alexandre | 63 |
8 | CLERC Aurélien | 71 |
9 | DAVIS Allan | 73 |
10 | HINAULT Sébastien | 63 |
11 | MARKOV Alexei | 80 |
12 | PAGLIARINI Luciano André | 68 |
13 | GÁLVEZ Isaac | 68 |
14 | SCHRÖDER Björn | 64 |
15 | MCGEE Bradley | 72 |
16 | ELMIGER Martin | 73 |
17 | HASELBACHER René | 69 |
18 | EISEL Bernhard | 74 |
20 | PÉREZ Rubén | 65 |
21 | DE LA FUENTE David | 67 |
22 | RAST Grégory | 80 |
23 | PAOLINI Luca | 66 |
24 | BILEKA Volodymyr | 65 |
25 | KROON Karsten | 67 |
26 | BALLAN Alessandro | 73 |