Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Garderen
1
72 kgSoler
2
70 kgCancellara
3
80 kgMollema
4
64 kgCunego
5
58 kgLeipheimer
6
62 kgSchleck
7
65 kgSagan
8
78 kgDi Luca
9
61 kgLarsson
10
77 kgKlöden
11
63 kgDanielson
12
58.5 kgVelits
13
63 kgFrank
14
64 kgCapecchi
15
65 kgFroome
16
68 kgten Dam
17
67 kgGerdemann
18
71 kgKruijswijk
19
63 kgGasparotto
20
65 kg
1
72 kgSoler
2
70 kgCancellara
3
80 kgMollema
4
64 kgCunego
5
58 kgLeipheimer
6
62 kgSchleck
7
65 kgSagan
8
78 kgDi Luca
9
61 kgLarsson
10
77 kgKlöden
11
63 kgDanielson
12
58.5 kgVelits
13
63 kgFrank
14
64 kgCapecchi
15
65 kgFroome
16
68 kgten Dam
17
67 kgGerdemann
18
71 kgKruijswijk
19
63 kgGasparotto
20
65 kg
Weight (KG) →
Result →
80
58
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | VAN GARDEREN Tejay | 72 |
2 | SOLER Juan Mauricio | 70 |
3 | CANCELLARA Fabian | 80 |
4 | MOLLEMA Bauke | 64 |
5 | CUNEGO Damiano | 58 |
6 | LEIPHEIMER Levi | 62 |
7 | SCHLECK Fränk | 65 |
8 | SAGAN Peter | 78 |
9 | DI LUCA Danilo | 61 |
10 | LARSSON Gustav Erik | 77 |
11 | KLÖDEN Andreas | 63 |
12 | DANIELSON Tom | 58.5 |
13 | VELITS Peter | 63 |
14 | FRANK Mathias | 64 |
15 | CAPECCHI Eros | 65 |
16 | FROOME Chris | 68 |
17 | TEN DAM Laurens | 67 |
18 | GERDEMANN Linus | 71 |
19 | KRUIJSWIJK Steven | 63 |
20 | GASPAROTTO Enrico | 65 |