Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Sagan
1
78 kgCosta
2
69 kgCancellara
3
80 kgSchleck
4
65 kgNieve
5
62 kgMoser
6
64 kgCaruso
7
60 kgElmiger
8
73 kgKessiakoff
9
61 kgKreuziger
10
65 kgPinot
11
63 kgAlbasini
12
65 kgRoche
13
70 kgSørensen
14
64 kgCataldo
15
64 kgGadret
16
58 kgValverde
17
61 kgSlagter
18
57 kgFuglsang
19
67 kgKišerlovski
20
72 kgLöfkvist
21
70 kgMonfort
22
66 kgDanielson
23
58.5 kg
1
78 kgCosta
2
69 kgCancellara
3
80 kgSchleck
4
65 kgNieve
5
62 kgMoser
6
64 kgCaruso
7
60 kgElmiger
8
73 kgKessiakoff
9
61 kgKreuziger
10
65 kgPinot
11
63 kgAlbasini
12
65 kgRoche
13
70 kgSørensen
14
64 kgCataldo
15
64 kgGadret
16
58 kgValverde
17
61 kgSlagter
18
57 kgFuglsang
19
67 kgKišerlovski
20
72 kgLöfkvist
21
70 kgMonfort
22
66 kgDanielson
23
58.5 kg
Weight (KG) →
Result →
80
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | COSTA Rui | 69 |
3 | CANCELLARA Fabian | 80 |
4 | SCHLECK Fränk | 65 |
5 | NIEVE Mikel | 62 |
6 | MOSER Moreno | 64 |
7 | CARUSO Giampaolo | 60 |
8 | ELMIGER Martin | 73 |
9 | KESSIAKOFF Fredrik | 61 |
10 | KREUZIGER Roman | 65 |
11 | PINOT Thibaut | 63 |
12 | ALBASINI Michael | 65 |
13 | ROCHE Nicolas | 70 |
14 | SØRENSEN Chris Anker | 64 |
15 | CATALDO Dario | 64 |
16 | GADRET John | 58 |
17 | VALVERDE Alejandro | 61 |
18 | SLAGTER Tom-Jelte | 57 |
19 | FUGLSANG Jakob | 67 |
20 | KIŠERLOVSKI Robert | 72 |
21 | LÖFKVIST Thomas | 70 |
22 | MONFORT Maxime | 66 |
23 | DANIELSON Tom | 58.5 |