Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Sagan
1
78 kgMartin
2
75 kgMeyer
3
70 kgDumoulin
4
69 kgDeignan
5
65 kgDennis
6
72 kgWarbasse
7
67 kgCancellara
8
80 kgSwift
9
69 kgDillier
10
75 kgMollema
11
64 kgde Kort
12
69 kgSlagter
13
57 kgSchurter
14
68 kgIzagirre
15
60 kgGasparotto
16
65 kgCattaneo
17
67 kgKolobnev
18
64 kgKennaugh
19
66 kgKing
20
68 kgPardilla
21
65 kgBurghardt
22
75 kg
1
78 kgMartin
2
75 kgMeyer
3
70 kgDumoulin
4
69 kgDeignan
5
65 kgDennis
6
72 kgWarbasse
7
67 kgCancellara
8
80 kgSwift
9
69 kgDillier
10
75 kgMollema
11
64 kgde Kort
12
69 kgSlagter
13
57 kgSchurter
14
68 kgIzagirre
15
60 kgGasparotto
16
65 kgCattaneo
17
67 kgKolobnev
18
64 kgKennaugh
19
66 kgKing
20
68 kgPardilla
21
65 kgBurghardt
22
75 kg
Weight (KG) →
Result →
80
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | MARTIN Tony | 75 |
3 | MEYER Cameron | 70 |
4 | DUMOULIN Tom | 69 |
5 | DEIGNAN Philip | 65 |
6 | DENNIS Rohan | 72 |
7 | WARBASSE Larry | 67 |
8 | CANCELLARA Fabian | 80 |
9 | SWIFT Ben | 69 |
10 | DILLIER Silvan | 75 |
11 | MOLLEMA Bauke | 64 |
12 | DE KORT Koen | 69 |
13 | SLAGTER Tom-Jelte | 57 |
14 | SCHURTER Nino | 68 |
15 | IZAGIRRE Ion | 60 |
16 | GASPAROTTO Enrico | 65 |
17 | CATTANEO Mattia | 67 |
18 | KOLOBNEV Alexandr | 64 |
19 | KENNAUGH Peter | 66 |
20 | KING Ben | 68 |
21 | PARDILLA Sergio | 65 |
22 | BURGHARDT Marcus | 75 |