Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Moreno
1
59 kgSagan
2
78 kgDumoulin
3
69 kgMarcato
4
67 kgĐurasek
5
56 kgPinot
6
63 kgArredondo
7
58 kgCancellara
8
80 kgMeyer
9
70 kgRoelandts
10
78 kgPibernik
11
60 kgBrändle
12
80 kgSamoilau
13
77 kgDenifl
14
65 kgThomas
15
71 kgMorabito
16
74 kgVan Avermaet
17
74 kg
1
59 kgSagan
2
78 kgDumoulin
3
69 kgMarcato
4
67 kgĐurasek
5
56 kgPinot
6
63 kgArredondo
7
58 kgCancellara
8
80 kgMeyer
9
70 kgRoelandts
10
78 kgPibernik
11
60 kgBrändle
12
80 kgSamoilau
13
77 kgDenifl
14
65 kgThomas
15
71 kgMorabito
16
74 kgVan Avermaet
17
74 kg
Weight (KG) →
Result →
80
56
1
17
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | MORENO Daniel | 59 |
| 2 | SAGAN Peter | 78 |
| 3 | DUMOULIN Tom | 69 |
| 4 | MARCATO Marco | 67 |
| 5 | ĐURASEK Kristijan | 56 |
| 6 | PINOT Thibaut | 63 |
| 7 | ARREDONDO Julián David | 58 |
| 8 | CANCELLARA Fabian | 80 |
| 9 | MEYER Cameron | 70 |
| 10 | ROELANDTS Jürgen | 78 |
| 11 | PIBERNIK Luka | 60 |
| 12 | BRÄNDLE Matthias | 80 |
| 13 | SAMOILAU Branislau | 77 |
| 14 | DENIFL Stefan | 65 |
| 15 | THOMAS Geraint | 71 |
| 16 | MORABITO Steve | 74 |
| 17 | VAN AVERMAET Greg | 74 |