Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Sagan
1
78 kgDillier
2
75 kgCancellara
3
80 kgRoelandts
4
78 kgRicheze
5
68 kgAlbasini
6
65 kgWyss
7
63 kgMatthews
8
72 kgBystrøm
9
73 kgDurbridge
10
78 kgElmiger
11
73 kgCort
12
68 kgTolhoek
13
61 kgIzagirre
14
60 kgDuijn
15
73 kgStuyven
16
78 kgMinard
17
65 kgRast
18
80 kg
1
78 kgDillier
2
75 kgCancellara
3
80 kgRoelandts
4
78 kgRicheze
5
68 kgAlbasini
6
65 kgWyss
7
63 kgMatthews
8
72 kgBystrøm
9
73 kgDurbridge
10
78 kgElmiger
11
73 kgCort
12
68 kgTolhoek
13
61 kgIzagirre
14
60 kgDuijn
15
73 kgStuyven
16
78 kgMinard
17
65 kgRast
18
80 kg
Weight (KG) →
Result →
80
60
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | DILLIER Silvan | 75 |
3 | CANCELLARA Fabian | 80 |
4 | ROELANDTS Jürgen | 78 |
5 | RICHEZE Maximiliano | 68 |
6 | ALBASINI Michael | 65 |
7 | WYSS Marcel | 63 |
8 | MATTHEWS Michael | 72 |
9 | BYSTRØM Sven Erik | 73 |
10 | DURBRIDGE Luke | 78 |
11 | ELMIGER Martin | 73 |
12 | CORT Magnus | 68 |
13 | TOLHOEK Antwan | 61 |
14 | IZAGIRRE Ion | 60 |
15 | DUIJN Huub | 73 |
16 | STUYVEN Jasper | 78 |
17 | MINARD Sébastien | 65 |
18 | RAST Grégory | 80 |