Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Matthews
1
72 kgDougall
2
72 kgReinders
3
78.1 kgGilbert
4
75 kgDennis
5
72 kgKüng
6
83 kgSagan
7
78 kgBevin
8
75 kgCaruso
9
67 kgAlbasini
10
65 kgDegenkolb
11
82 kgRoux
12
73 kgNorman Leth
13
75 kgDunne
14
88 kgBrändle
15
80 kgWellens
16
71 kgBakelants
17
67 kgDumoulin
18
69 kgTrentin
19
74 kgDuchesne
20
75 kgCosta
21
69 kg
1
72 kgDougall
2
72 kgReinders
3
78.1 kgGilbert
4
75 kgDennis
5
72 kgKüng
6
83 kgSagan
7
78 kgBevin
8
75 kgCaruso
9
67 kgAlbasini
10
65 kgDegenkolb
11
82 kgRoux
12
73 kgNorman Leth
13
75 kgDunne
14
88 kgBrändle
15
80 kgWellens
16
71 kgBakelants
17
67 kgDumoulin
18
69 kgTrentin
19
74 kgDuchesne
20
75 kgCosta
21
69 kg
Weight (KG) →
Result →
88
65
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | MATTHEWS Michael | 72 |
2 | DOUGALL Nic | 72 |
3 | REINDERS Elmar | 78.1 |
4 | GILBERT Philippe | 75 |
5 | DENNIS Rohan | 72 |
6 | KÜNG Stefan | 83 |
7 | SAGAN Peter | 78 |
8 | BEVIN Patrick | 75 |
9 | CARUSO Damiano | 67 |
10 | ALBASINI Michael | 65 |
11 | DEGENKOLB John | 82 |
12 | ROUX Anthony | 73 |
13 | NORMAN LETH Lasse | 75 |
14 | DUNNE Conor | 88 |
15 | BRÄNDLE Matthias | 80 |
16 | WELLENS Tim | 71 |
17 | BAKELANTS Jan | 67 |
18 | DUMOULIN Tom | 69 |
19 | TRENTIN Matteo | 74 |
20 | DUCHESNE Antoine | 75 |
21 | COSTA Rui | 69 |