Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Sagan
1
78 kgWatson
2
72 kgGaviria
3
71 kgJuul-Jensen
4
73 kgColbrelli
5
74 kgMatthews
6
72 kgPeters
7
72 kgChristian
8
72 kgKüng
10
83 kgLampaert
11
75 kgHaas
12
71 kgQuéméneur
13
67 kgAlbasini
14
65 kgGrellier
15
65 kgLammertink
16
61 kgPadun
17
67 kgCort
18
68 kgOurselin
19
70 kgBrown
20
65 kg
1
78 kgWatson
2
72 kgGaviria
3
71 kgJuul-Jensen
4
73 kgColbrelli
5
74 kgMatthews
6
72 kgPeters
7
72 kgChristian
8
72 kgKüng
10
83 kgLampaert
11
75 kgHaas
12
71 kgQuéméneur
13
67 kgAlbasini
14
65 kgGrellier
15
65 kgLammertink
16
61 kgPadun
17
67 kgCort
18
68 kgOurselin
19
70 kgBrown
20
65 kg
Weight (KG) →
Result →
83
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | WATSON Calvin | 72 |
3 | GAVIRIA Fernando | 71 |
4 | JUUL-JENSEN Christopher | 73 |
5 | COLBRELLI Sonny | 74 |
6 | MATTHEWS Michael | 72 |
7 | PETERS Nans | 72 |
8 | CHRISTIAN Mark | 72 |
10 | KÜNG Stefan | 83 |
11 | LAMPAERT Yves | 75 |
12 | HAAS Nathan | 71 |
13 | QUÉMÉNEUR Perrig | 67 |
14 | ALBASINI Michael | 65 |
15 | GRELLIER Fabien | 65 |
16 | LAMMERTINK Maurits | 61 |
17 | PADUN Mark | 67 |
18 | CORT Magnus | 68 |
19 | OURSELIN Paul | 70 |
20 | BROWN Nathan | 65 |