Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Mas
1
61 kgOomen
2
65 kgSivakov
3
70 kgCarthy
4
69 kgLambrecht
5
56 kgKudus
6
58 kgMühlberger
7
64 kgPadun
8
67 kgPeters
9
72 kgCras
10
65 kgKragh Andersen
11
73 kgDunbar
12
57 kgOurselin
13
70 kgGrellier
14
65 kgBoudat
15
70 kgPearson
16
53 kgTroia
17
80 kgHalvorsen
19
69 kg
1
61 kgOomen
2
65 kgSivakov
3
70 kgCarthy
4
69 kgLambrecht
5
56 kgKudus
6
58 kgMühlberger
7
64 kgPadun
8
67 kgPeters
9
72 kgCras
10
65 kgKragh Andersen
11
73 kgDunbar
12
57 kgOurselin
13
70 kgGrellier
14
65 kgBoudat
15
70 kgPearson
16
53 kgTroia
17
80 kgHalvorsen
19
69 kg
Weight (KG) →
Result →
80
53
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | MAS Enric | 61 |
2 | OOMEN Sam | 65 |
3 | SIVAKOV Pavel | 70 |
4 | CARTHY Hugh | 69 |
5 | LAMBRECHT Bjorg | 56 |
6 | KUDUS Merhawi | 58 |
7 | MÜHLBERGER Gregor | 64 |
8 | PADUN Mark | 67 |
9 | PETERS Nans | 72 |
10 | CRAS Steff | 65 |
11 | KRAGH ANDERSEN Søren | 73 |
12 | DUNBAR Eddie | 57 |
13 | OURSELIN Paul | 70 |
14 | GRELLIER Fabien | 65 |
15 | BOUDAT Thomas | 70 |
16 | PEARSON Daniel | 53 |
17 | TROIA Oliviero | 80 |
19 | HALVORSEN Kristoffer | 69 |