Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Sagan
1
78 kgDennis
2
72 kgSánchez
3
73 kgAsgreen
4
75 kgImhof
5
80 kgViviani
6
67 kgBodnar
7
77 kgMatthews
8
72 kgSmit
9
72 kgTrentin
10
74 kgDegenkolb
11
82 kgLindeman
12
69 kgKragh Andersen
13
73 kgGarcía Cortina
14
77 kgPellaud
15
70 kgFraile
16
72 kgVan Avermaet
17
74 kgSwift
18
69 kgVan Keirsbulck
19
89 kgThalmann
20
61 kgMannion
21
58 kgAnderson
22
66 kg
1
78 kgDennis
2
72 kgSánchez
3
73 kgAsgreen
4
75 kgImhof
5
80 kgViviani
6
67 kgBodnar
7
77 kgMatthews
8
72 kgSmit
9
72 kgTrentin
10
74 kgDegenkolb
11
82 kgLindeman
12
69 kgKragh Andersen
13
73 kgGarcía Cortina
14
77 kgPellaud
15
70 kgFraile
16
72 kgVan Avermaet
17
74 kgSwift
18
69 kgVan Keirsbulck
19
89 kgThalmann
20
61 kgMannion
21
58 kgAnderson
22
66 kg
Weight (KG) →
Result →
89
58
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | DENNIS Rohan | 72 |
3 | SÁNCHEZ Luis León | 73 |
4 | ASGREEN Kasper | 75 |
5 | IMHOF Claudio | 80 |
6 | VIVIANI Elia | 67 |
7 | BODNAR Maciej | 77 |
8 | MATTHEWS Michael | 72 |
9 | SMIT Willie | 72 |
10 | TRENTIN Matteo | 74 |
11 | DEGENKOLB John | 82 |
12 | LINDEMAN Bert-Jan | 69 |
13 | KRAGH ANDERSEN Søren | 73 |
14 | GARCÍA CORTINA Iván | 77 |
15 | PELLAUD Simon | 70 |
16 | FRAILE Omar | 72 |
17 | VAN AVERMAET Greg | 74 |
18 | SWIFT Ben | 69 |
19 | VAN KEIRSBULCK Guillaume | 89 |
20 | THALMANN Roland | 61 |
21 | MANNION Gavin | 58 |
22 | ANDERSON Ryan | 66 |