Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van der Poel
1
75 kgKüng
2
83 kgImhof
3
80 kgCattaneo
4
67 kgSchachmann
5
71 kgAlaphilippe
6
62 kgLaporte
7
76 kgBissegger
8
78 kgMatthews
9
72 kgPoels
10
66 kgGarcía Cortina
11
77 kgScully
12
85 kgHirschi
13
61 kgDunbar
14
57 kgBohli
15
71 kgFrank
16
64 kgWoods
17
62 kgRochas
18
51 kgJansen
19
83 kg
1
75 kgKüng
2
83 kgImhof
3
80 kgCattaneo
4
67 kgSchachmann
5
71 kgAlaphilippe
6
62 kgLaporte
7
76 kgBissegger
8
78 kgMatthews
9
72 kgPoels
10
66 kgGarcía Cortina
11
77 kgScully
12
85 kgHirschi
13
61 kgDunbar
14
57 kgBohli
15
71 kgFrank
16
64 kgWoods
17
62 kgRochas
18
51 kgJansen
19
83 kg
Weight (KG) →
Result →
85
51
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
2 | KÜNG Stefan | 83 |
3 | IMHOF Claudio | 80 |
4 | CATTANEO Mattia | 67 |
5 | SCHACHMANN Maximilian | 71 |
6 | ALAPHILIPPE Julian | 62 |
7 | LAPORTE Christophe | 76 |
8 | BISSEGGER Stefan | 78 |
9 | MATTHEWS Michael | 72 |
10 | POELS Wout | 66 |
11 | GARCÍA CORTINA Iván | 77 |
12 | SCULLY Tom | 85 |
13 | HIRSCHI Marc | 61 |
14 | DUNBAR Eddie | 57 |
15 | BOHLI Tom | 71 |
16 | FRANK Mathias | 64 |
17 | WOODS Michael | 62 |
18 | ROCHAS Rémy | 51 |
19 | JANSEN Amund Grøndahl | 83 |