Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
van der Poel
1
75 kgBissegger
2
78 kgKüng
3
83 kgImhof
4
80 kgThomas
5
68 kgCattaneo
6
67 kgSuter
7
75 kgRosskopf
8
74 kgSchachmann
9
71 kgAlaphilippe
10
62 kgLaporte
11
76 kgMatthews
12
72 kgPoels
13
66 kgGarcía Cortina
14
77 kgScully
15
85 kgHirschi
16
61 kgDunbar
17
57 kgTheuns
18
72 kgFrank
19
64 kgBohli
20
71 kgWoods
21
62 kgRochas
22
51 kgJansen
23
83 kg
1
75 kgBissegger
2
78 kgKüng
3
83 kgImhof
4
80 kgThomas
5
68 kgCattaneo
6
67 kgSuter
7
75 kgRosskopf
8
74 kgSchachmann
9
71 kgAlaphilippe
10
62 kgLaporte
11
76 kgMatthews
12
72 kgPoels
13
66 kgGarcía Cortina
14
77 kgScully
15
85 kgHirschi
16
61 kgDunbar
17
57 kgTheuns
18
72 kgFrank
19
64 kgBohli
20
71 kgWoods
21
62 kgRochas
22
51 kgJansen
23
83 kg
Weight (KG) →
Result →
85
51
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
2 | BISSEGGER Stefan | 78 |
3 | KÜNG Stefan | 83 |
4 | IMHOF Claudio | 80 |
5 | THOMAS Benjamin | 68 |
6 | CATTANEO Mattia | 67 |
7 | SUTER Joel | 75 |
8 | ROSSKOPF Joey | 74 |
9 | SCHACHMANN Maximilian | 71 |
10 | ALAPHILIPPE Julian | 62 |
11 | LAPORTE Christophe | 76 |
12 | MATTHEWS Michael | 72 |
13 | POELS Wout | 66 |
14 | GARCÍA CORTINA Iván | 77 |
15 | SCULLY Tom | 85 |
16 | HIRSCHI Marc | 61 |
17 | DUNBAR Eddie | 57 |
18 | THEUNS Edward | 72 |
19 | FRANK Mathias | 64 |
20 | BOHLI Tom | 71 |
21 | WOODS Michael | 62 |
22 | ROCHAS Rémy | 51 |
23 | JANSEN Amund Grøndahl | 83 |