Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -15.1 * weight + 1141
This means that on average for every extra kilogram weight a rider loses -15.1 positions in the result.
van Aert
1
78 kgSkjelmose
2
65 kgKüng
3
83 kgGirmay
4
70 kgEvenepoel
5
61 kgGall
6
66 kgDémare
7
76 kgAyuso
8
65 kgTeunissen
9
73 kgSbaragli
10
74 kgSheffield
11
73 kgBittner
12
73 kgHeiduk
13
70 kgFelline
14
68 kgUijtdebroeks
15
68 kgPrice-Pejtersen
16
83 kgSagan
17
78 kgVelasco
991
59 kg
1
78 kgSkjelmose
2
65 kgKüng
3
83 kgGirmay
4
70 kgEvenepoel
5
61 kgGall
6
66 kgDémare
7
76 kgAyuso
8
65 kgTeunissen
9
73 kgSbaragli
10
74 kgSheffield
11
73 kgBittner
12
73 kgHeiduk
13
70 kgFelline
14
68 kgUijtdebroeks
15
68 kgPrice-Pejtersen
16
83 kgSagan
17
78 kgVelasco
991
59 kg
Weight (KG) →
Result →
83
59
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AERT Wout | 78 |
2 | SKJELMOSE Mattias | 65 |
3 | KÜNG Stefan | 83 |
4 | GIRMAY Biniam | 70 |
5 | EVENEPOEL Remco | 61 |
6 | GALL Felix | 66 |
7 | DÉMARE Arnaud | 76 |
8 | AYUSO Juan | 65 |
9 | TEUNISSEN Mike | 73 |
10 | SBARAGLI Kristian | 74 |
11 | SHEFFIELD Magnus | 73 |
12 | BITTNER Pavel | 73 |
13 | HEIDUK Kim | 70 |
14 | FELLINE Fabio | 68 |
15 | UIJTDEBROEKS Cian | 68 |
16 | PRICE-PEJTERSEN Johan | 83 |
17 | SAGAN Peter | 78 |
991 | VELASCO Simone | 59 |