Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -10.7 * weight + 799
This means that on average for every extra kilogram weight a rider loses -10.7 positions in the result.
van Aert
1
78 kgSkjelmose
2
65 kgGall
3
66 kgEvenepoel
4
63 kgAyuso
5
65 kgKüng
6
83 kgGirmay
7
70 kgDewulf
8
74 kgSbaragli
9
74 kgDémare
10
76 kgBilbao
11
60 kgUijtdebroeks
12
68 kgCosta
13
69 kgEenkhoorn
14
72 kgTeunissen
15
73 kgUrán
16
63 kgBittner
17
73 kgHeiduk
18
70 kgFelline
19
68 kgKelderman
20
65 kgBardet
21
65 kgSagan
22
78 kgPrice-Pejtersen
23
83 kgVelasco
991
59 kg
1
78 kgSkjelmose
2
65 kgGall
3
66 kgEvenepoel
4
63 kgAyuso
5
65 kgKüng
6
83 kgGirmay
7
70 kgDewulf
8
74 kgSbaragli
9
74 kgDémare
10
76 kgBilbao
11
60 kgUijtdebroeks
12
68 kgCosta
13
69 kgEenkhoorn
14
72 kgTeunissen
15
73 kgUrán
16
63 kgBittner
17
73 kgHeiduk
18
70 kgFelline
19
68 kgKelderman
20
65 kgBardet
21
65 kgSagan
22
78 kgPrice-Pejtersen
23
83 kgVelasco
991
59 kg
Weight (KG) →
Result →
83
59
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AERT Wout | 78 |
2 | SKJELMOSE Mattias | 65 |
3 | GALL Felix | 66 |
4 | EVENEPOEL Remco | 63 |
5 | AYUSO Juan | 65 |
6 | KÜNG Stefan | 83 |
7 | GIRMAY Biniam | 70 |
8 | DEWULF Stan | 74 |
9 | SBARAGLI Kristian | 74 |
10 | DÉMARE Arnaud | 76 |
11 | BILBAO Pello | 60 |
12 | UIJTDEBROEKS Cian | 68 |
13 | COSTA Rui | 69 |
14 | EENKHOORN Pascal | 72 |
15 | TEUNISSEN Mike | 73 |
16 | URÁN Rigoberto | 63 |
17 | BITTNER Pavel | 73 |
18 | HEIDUK Kim | 70 |
19 | FELLINE Fabio | 68 |
20 | KELDERMAN Wilco | 65 |
21 | BARDET Romain | 65 |
22 | SAGAN Peter | 78 |
23 | PRICE-PEJTERSEN Johan | 83 |
991 | VELASCO Simone | 59 |