Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Eenkhoorn
1
72 kgHiguita
2
57 kgAyuso
3
65 kgGall
4
66 kgvan Aert
6
78 kgKelderman
7
65 kgBernard
8
60 kgSkjelmose
9
65 kgDillier
10
75 kgGogl
11
71 kgMosca
12
65 kgBardet
13
65 kgVermaerke
14
67 kgEvenepoel
15
61 kgLazkano
16
74 kgGesink
17
70 kgOurselin
18
70 kgDewulf
19
74 kgHollenstein
20
80 kgUijtdebroeks
21
68 kgPowless
22
67 kgNarváez
23
65 kgCattaneo
24
67 kgPacher
25
62 kg
1
72 kgHiguita
2
57 kgAyuso
3
65 kgGall
4
66 kgvan Aert
6
78 kgKelderman
7
65 kgBernard
8
60 kgSkjelmose
9
65 kgDillier
10
75 kgGogl
11
71 kgMosca
12
65 kgBardet
13
65 kgVermaerke
14
67 kgEvenepoel
15
61 kgLazkano
16
74 kgGesink
17
70 kgOurselin
18
70 kgDewulf
19
74 kgHollenstein
20
80 kgUijtdebroeks
21
68 kgPowless
22
67 kgNarváez
23
65 kgCattaneo
24
67 kgPacher
25
62 kg
Weight (KG) →
Result →
80
57
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | EENKHOORN Pascal | 72 |
2 | HIGUITA Sergio | 57 |
3 | AYUSO Juan | 65 |
4 | GALL Felix | 66 |
6 | VAN AERT Wout | 78 |
7 | KELDERMAN Wilco | 65 |
8 | BERNARD Julien | 60 |
9 | SKJELMOSE Mattias | 65 |
10 | DILLIER Silvan | 75 |
11 | GOGL Michael | 71 |
12 | MOSCA Jacopo | 65 |
13 | BARDET Romain | 65 |
14 | VERMAERKE Kevin | 67 |
15 | EVENEPOEL Remco | 61 |
16 | LAZKANO Oier | 74 |
17 | GESINK Robert | 70 |
18 | OURSELIN Paul | 70 |
19 | DEWULF Stan | 74 |
20 | HOLLENSTEIN Reto | 80 |
21 | UIJTDEBROEKS Cian | 68 |
22 | POWLESS Neilson | 67 |
23 | NARVÁEZ Jhonatan | 65 |
24 | CATTANEO Mattia | 67 |
25 | PACHER Quentin | 62 |