Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
van Aert
1
78 kgEvenepoel
2
63 kgSkjelmose
3
65 kgAyuso
4
65 kgGall
5
66 kgHermans
6
62 kgDewulf
7
74 kgSbaragli
8
74 kgUijtdebroeks
9
68 kgGogl
10
71 kgEenkhoorn
11
72 kgUrán
12
63 kgBissegger
13
78 kgManzin
14
69 kgBittner
15
73 kgHeiduk
16
70 kgKnox
17
58 kgFelline
18
68 kgKelderman
19
65 kgBardet
20
65 kgAranburu
21
63 kgSagan
22
78 kg
1
78 kgEvenepoel
2
63 kgSkjelmose
3
65 kgAyuso
4
65 kgGall
5
66 kgHermans
6
62 kgDewulf
7
74 kgSbaragli
8
74 kgUijtdebroeks
9
68 kgGogl
10
71 kgEenkhoorn
11
72 kgUrán
12
63 kgBissegger
13
78 kgManzin
14
69 kgBittner
15
73 kgHeiduk
16
70 kgKnox
17
58 kgFelline
18
68 kgKelderman
19
65 kgBardet
20
65 kgAranburu
21
63 kgSagan
22
78 kg
Weight (KG) →
Result →
78
58
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AERT Wout | 78 |
2 | EVENEPOEL Remco | 63 |
3 | SKJELMOSE Mattias | 65 |
4 | AYUSO Juan | 65 |
5 | GALL Felix | 66 |
6 | HERMANS Quinten | 62 |
7 | DEWULF Stan | 74 |
8 | SBARAGLI Kristian | 74 |
9 | UIJTDEBROEKS Cian | 68 |
10 | GOGL Michael | 71 |
11 | EENKHOORN Pascal | 72 |
12 | URÁN Rigoberto | 63 |
13 | BISSEGGER Stefan | 78 |
14 | MANZIN Lorrenzo | 69 |
15 | BITTNER Pavel | 73 |
16 | HEIDUK Kim | 70 |
17 | KNOX James | 58 |
18 | FELLINE Fabio | 68 |
19 | KELDERMAN Wilco | 65 |
20 | BARDET Romain | 65 |
21 | ARANBURU Alex | 63 |
22 | SAGAN Peter | 78 |