Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Coquard
1
59 kgMatthews
2
72 kgTræen
3
63 kgLampaert
4
75 kgNys
5
64 kgYates
8
58 kgAlmeida
9
63 kgWilliams
10
59 kgBissegger
11
78 kgSkjelmose
12
65 kgBettiol
13
69 kgHayter
14
70 kgDe Lie
15
78 kgLienhard
16
73 kgAdrià
18
64 kgRivera
19
60 kgCalmejane
20
70 kgJacobs
21
78 kgDebons
22
65 kgBernal
23
60 kgLapeira
24
64 kgFisher-Black
25
69 kgCosta
26
69 kg
1
59 kgMatthews
2
72 kgTræen
3
63 kgLampaert
4
75 kgNys
5
64 kgYates
8
58 kgAlmeida
9
63 kgWilliams
10
59 kgBissegger
11
78 kgSkjelmose
12
65 kgBettiol
13
69 kgHayter
14
70 kgDe Lie
15
78 kgLienhard
16
73 kgAdrià
18
64 kgRivera
19
60 kgCalmejane
20
70 kgJacobs
21
78 kgDebons
22
65 kgBernal
23
60 kgLapeira
24
64 kgFisher-Black
25
69 kgCosta
26
69 kg
Weight (KG) →
Result →
78
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | COQUARD Bryan | 59 |
2 | MATTHEWS Michael | 72 |
3 | TRÆEN Torstein | 63 |
4 | LAMPAERT Yves | 75 |
5 | NYS Thibau | 64 |
8 | YATES Adam | 58 |
9 | ALMEIDA João | 63 |
10 | WILLIAMS Stephen | 59 |
11 | BISSEGGER Stefan | 78 |
12 | SKJELMOSE Mattias | 65 |
13 | BETTIOL Alberto | 69 |
14 | HAYTER Ethan | 70 |
15 | DE LIE Arnaud | 78 |
16 | LIENHARD Fabian | 73 |
18 | ADRIÀ Roger | 64 |
19 | RIVERA Brandon Smith | 60 |
20 | CALMEJANE Lilian | 70 |
21 | JACOBS Johan | 78 |
22 | DEBONS Antoine | 65 |
23 | BERNAL Egan | 60 |
24 | LAPEIRA Paul | 64 |
25 | FISHER-BLACK Finn | 69 |
26 | COSTA Rui | 69 |