Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Grégoire
1
64 kgSimmons
2
73 kgAlbanese
3
70 kgVauquelin
4
69 kgAlmeida
5
63 kgRutsch
7
82 kgLe Berre
8
68 kgOnley
11
62 kgAskey
12
75 kgAlaphilippe
13
62 kgCastrillo
14
74 kgSchmid
15
70 kgBattistella
16
67 kgO'Connor
17
67 kgMohorič
18
71 kgvan Poppel
19
82 kgPeters
20
72 kgDillier
21
75 kg
1
64 kgSimmons
2
73 kgAlbanese
3
70 kgVauquelin
4
69 kgAlmeida
5
63 kgRutsch
7
82 kgLe Berre
8
68 kgOnley
11
62 kgAskey
12
75 kgAlaphilippe
13
62 kgCastrillo
14
74 kgSchmid
15
70 kgBattistella
16
67 kgO'Connor
17
67 kgMohorič
18
71 kgvan Poppel
19
82 kgPeters
20
72 kgDillier
21
75 kg
Weight (KG) →
Result →
82
62
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | GRÉGOIRE Romain | 64 |
2 | SIMMONS Quinn | 73 |
3 | ALBANESE Vincenzo | 70 |
4 | VAUQUELIN Kévin | 69 |
5 | ALMEIDA João | 63 |
7 | RUTSCH Jonas | 82 |
8 | LE BERRE Mathis | 68 |
11 | ONLEY Oscar | 62 |
12 | ASKEY Lewis | 75 |
13 | ALAPHILIPPE Julian | 62 |
14 | CASTRILLO Pablo | 74 |
15 | SCHMID Mauro | 70 |
16 | BATTISTELLA Samuele | 67 |
17 | O'CONNOR Ben | 67 |
18 | MOHORIČ Matej | 71 |
19 | VAN POPPEL Danny | 82 |
20 | PETERS Nans | 72 |
21 | DILLIER Silvan | 75 |