Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 86
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Wong
1
65 kgMiyazawa
2
61 kgNishitani
3
62 kgMurphy
7
81 kgMifune
15
70 kgPark
16
73 kgTang
19
62 kgSaleh
22
58 kgUchima
24
63 kgAbe
29
67 kgKuboki
36
68 kgJones
37
64 kgSuzuki
51
57 kgHoffmann
52
65 kgSuzuki
58
60 kgWu
61
68 kgFukushima
63
62 kgMcCann
71
73 kgSlagter
84
57 kgFeng
90
68 kg
1
65 kgMiyazawa
2
61 kgNishitani
3
62 kgMurphy
7
81 kgMifune
15
70 kgPark
16
73 kgTang
19
62 kgSaleh
22
58 kgUchima
24
63 kgAbe
29
67 kgKuboki
36
68 kgJones
37
64 kgSuzuki
51
57 kgHoffmann
52
65 kgSuzuki
58
60 kgWu
61
68 kgFukushima
63
62 kgMcCann
71
73 kgSlagter
84
57 kgFeng
90
68 kg
Weight (KG) →
Result →
81
57
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | WONG Kam-Po | 65 |
2 | MIYAZAWA Takashi | 61 |
3 | NISHITANI Taiji | 62 |
7 | MURPHY John | 81 |
15 | MIFUNE Masahiko | 70 |
16 | PARK Sung Baek | 73 |
19 | TANG Wang Yip | 62 |
22 | SALEH Mohd Zamri | 58 |
24 | UCHIMA Kohei | 63 |
29 | ABE Yoshiyuki | 67 |
36 | KUBOKI Kazushige | 68 |
37 | JONES Chris | 64 |
51 | SUZUKI Yuzuru | 57 |
52 | HOFFMANN Erik | 65 |
58 | SUZUKI Shinri | 60 |
61 | WU Kin San | 68 |
63 | FUKUSHIMA Shinichi | 62 |
71 | MCCANN David | 73 |
84 | SLAGTER Tom-Jelte | 57 |
90 | FENG Chun Kai | 68 |