Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Wong
1
65 kgFukushima
2
62 kgMurphy
3
81 kgNishitani
4
62 kgPark
8
73 kgTang
9
62 kgMifune
13
70 kgSlagter
14
57 kgUchima
15
63 kgMiyazawa
16
61 kgAbe
32
67 kgSuzuki
37
60 kgHoffmann
39
65 kgJones
52
64 kgWu
55
68 kgSuzuki
61
57 kgKuboki
64
68 kgFeng
74
68 kgMcCann
77
73 kg
1
65 kgFukushima
2
62 kgMurphy
3
81 kgNishitani
4
62 kgPark
8
73 kgTang
9
62 kgMifune
13
70 kgSlagter
14
57 kgUchima
15
63 kgMiyazawa
16
61 kgAbe
32
67 kgSuzuki
37
60 kgHoffmann
39
65 kgJones
52
64 kgWu
55
68 kgSuzuki
61
57 kgKuboki
64
68 kgFeng
74
68 kgMcCann
77
73 kg
Weight (KG) →
Result →
81
57
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | WONG Kam-Po | 65 |
2 | FUKUSHIMA Shinichi | 62 |
3 | MURPHY John | 81 |
4 | NISHITANI Taiji | 62 |
8 | PARK Sung Baek | 73 |
9 | TANG Wang Yip | 62 |
13 | MIFUNE Masahiko | 70 |
14 | SLAGTER Tom-Jelte | 57 |
15 | UCHIMA Kohei | 63 |
16 | MIYAZAWA Takashi | 61 |
32 | ABE Yoshiyuki | 67 |
37 | SUZUKI Shinri | 60 |
39 | HOFFMANN Erik | 65 |
52 | JONES Chris | 64 |
55 | WU Kin San | 68 |
61 | SUZUKI Yuzuru | 57 |
64 | KUBOKI Kazushige | 68 |
74 | FENG Chun Kai | 68 |
77 | MCCANN David | 73 |