Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Nishitani
5
62 kgKiendyś
6
78 kgBeuchat
7
62 kgTang
8
62 kgWong
11
65 kgGruzdev
13
78 kgShushemoin
14
62 kgSuzuki
18
60 kgTsuji
21
62 kgLisowicz
26
85 kgMatysiak
28
71 kgHanson
29
74 kgFeng
32
68 kgWu
47
68 kgUchima
52
63 kgBodnar
53
68 kgSuzuki
66
57 kgMukaigawa
68
64 kgFukuda
75
70 kgBouglas
79
71 kg
5
62 kgKiendyś
6
78 kgBeuchat
7
62 kgTang
8
62 kgWong
11
65 kgGruzdev
13
78 kgShushemoin
14
62 kgSuzuki
18
60 kgTsuji
21
62 kgLisowicz
26
85 kgMatysiak
28
71 kgHanson
29
74 kgFeng
32
68 kgWu
47
68 kgUchima
52
63 kgBodnar
53
68 kgSuzuki
66
57 kgMukaigawa
68
64 kgFukuda
75
70 kgBouglas
79
71 kg
Weight (KG) →
Result →
85
57
5
79
# | Rider | Weight (KG) |
---|---|---|
5 | NISHITANI Taiji | 62 |
6 | KIENDYŚ Tomasz | 78 |
7 | BEUCHAT Roger | 62 |
8 | TANG Wang Yip | 62 |
11 | WONG Kam-Po | 65 |
13 | GRUZDEV Dmitriy | 78 |
14 | SHUSHEMOIN Alexandr | 62 |
18 | SUZUKI Shinri | 60 |
21 | TSUJI Yoshimitsu | 62 |
26 | LISOWICZ Tomasz | 85 |
28 | MATYSIAK Bartłomiej | 71 |
29 | HANSON Ken | 74 |
32 | FENG Chun Kai | 68 |
47 | WU Kin San | 68 |
52 | UCHIMA Kohei | 63 |
53 | BODNAR Łukasz | 68 |
66 | SUZUKI Yuzuru | 57 |
68 | MUKAIGAWA Naoki | 64 |
75 | FUKUDA Shinpei | 70 |
79 | BOUGLAS Georgios | 71 |