Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 30
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Nishitani
2
62 kgMatysiak
4
71 kgWong
7
65 kgSuzuki
10
60 kgGruzdev
12
78 kgSaleh
13
58 kgTsuji
14
62 kgUchima
23
63 kgKiendyś
24
78 kgBeuchat
25
62 kgHanson
26
74 kgTang
29
62 kgHatanaka
38
72 kgWu
39
68 kgFeng
40
68 kgBouglas
46
71 kgBodnar
53
68 kgShushemoin
57
62 kgSuzuki
70
57 kgFukuda
72
70 kgHuang
86
55 kgMukaigawa
102
64 kgLisowicz
105
85 kgEldridge
106
84 kg
2
62 kgMatysiak
4
71 kgWong
7
65 kgSuzuki
10
60 kgGruzdev
12
78 kgSaleh
13
58 kgTsuji
14
62 kgUchima
23
63 kgKiendyś
24
78 kgBeuchat
25
62 kgHanson
26
74 kgTang
29
62 kgHatanaka
38
72 kgWu
39
68 kgFeng
40
68 kgBouglas
46
71 kgBodnar
53
68 kgShushemoin
57
62 kgSuzuki
70
57 kgFukuda
72
70 kgHuang
86
55 kgMukaigawa
102
64 kgLisowicz
105
85 kgEldridge
106
84 kg
Weight (KG) →
Result →
85
55
2
106
# | Rider | Weight (KG) |
---|---|---|
2 | NISHITANI Taiji | 62 |
4 | MATYSIAK Bartłomiej | 71 |
7 | WONG Kam-Po | 65 |
10 | SUZUKI Shinri | 60 |
12 | GRUZDEV Dmitriy | 78 |
13 | SALEH Mohd Zamri | 58 |
14 | TSUJI Yoshimitsu | 62 |
23 | UCHIMA Kohei | 63 |
24 | KIENDYŚ Tomasz | 78 |
25 | BEUCHAT Roger | 62 |
26 | HANSON Ken | 74 |
29 | TANG Wang Yip | 62 |
38 | HATANAKA Yusuke | 72 |
39 | WU Kin San | 68 |
40 | FENG Chun Kai | 68 |
46 | BOUGLAS Georgios | 71 |
53 | BODNAR Łukasz | 68 |
57 | SHUSHEMOIN Alexandr | 62 |
70 | SUZUKI Yuzuru | 57 |
72 | FUKUDA Shinpei | 70 |
86 | HUANG Wen Chung | 55 |
102 | MUKAIGAWA Naoki | 64 |
105 | LISOWICZ Tomasz | 85 |
106 | ELDRIDGE Joe | 84 |