Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Wong
10
65 kgGruzdev
11
78 kgMatysiak
15
71 kgTang
19
62 kgBeuchat
27
62 kgFeng
34
68 kgSuzuki
37
57 kgSaleh
38
58 kgWu
39
68 kgBouglas
41
71 kgLisowicz
43
85 kgSuzuki
52
60 kgShushemoin
55
62 kgUchima
57
63 kgKiendyś
60
78 kgBodnar
78
68 kgEldridge
79
84 kgNishitani
84
62 kgFukuda
85
70 kgMukaigawa
91
64 kgTsuji
92
62 kgHuang
93
55 kgHanson
103
74 kg
10
65 kgGruzdev
11
78 kgMatysiak
15
71 kgTang
19
62 kgBeuchat
27
62 kgFeng
34
68 kgSuzuki
37
57 kgSaleh
38
58 kgWu
39
68 kgBouglas
41
71 kgLisowicz
43
85 kgSuzuki
52
60 kgShushemoin
55
62 kgUchima
57
63 kgKiendyś
60
78 kgBodnar
78
68 kgEldridge
79
84 kgNishitani
84
62 kgFukuda
85
70 kgMukaigawa
91
64 kgTsuji
92
62 kgHuang
93
55 kgHanson
103
74 kg
Weight (KG) →
Result →
85
55
10
103
# | Rider | Weight (KG) |
---|---|---|
10 | WONG Kam-Po | 65 |
11 | GRUZDEV Dmitriy | 78 |
15 | MATYSIAK Bartłomiej | 71 |
19 | TANG Wang Yip | 62 |
27 | BEUCHAT Roger | 62 |
34 | FENG Chun Kai | 68 |
37 | SUZUKI Yuzuru | 57 |
38 | SALEH Mohd Zamri | 58 |
39 | WU Kin San | 68 |
41 | BOUGLAS Georgios | 71 |
43 | LISOWICZ Tomasz | 85 |
52 | SUZUKI Shinri | 60 |
55 | SHUSHEMOIN Alexandr | 62 |
57 | UCHIMA Kohei | 63 |
60 | KIENDYŚ Tomasz | 78 |
78 | BODNAR Łukasz | 68 |
79 | ELDRIDGE Joe | 84 |
84 | NISHITANI Taiji | 62 |
85 | FUKUDA Shinpei | 70 |
91 | MUKAIGAWA Naoki | 64 |
92 | TSUJI Yoshimitsu | 62 |
93 | HUANG Wen Chung | 55 |
103 | HANSON Ken | 74 |