Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 38
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Nishitani
2
62 kgHanson
7
74 kgWong
10
65 kgTang
13
62 kgSaleh
15
58 kgTsuji
19
62 kgGruzdev
28
78 kgMatysiak
31
71 kgBouglas
32
71 kgFeng
37
68 kgFukuda
39
70 kgWu
40
68 kgMukaigawa
42
64 kgBeuchat
44
62 kgShushemoin
49
62 kgLisowicz
58
85 kgKiendyś
63
78 kgSuzuki
65
60 kgUchima
76
63 kgBodnar
87
68 kgSuzuki
88
57 kg
2
62 kgHanson
7
74 kgWong
10
65 kgTang
13
62 kgSaleh
15
58 kgTsuji
19
62 kgGruzdev
28
78 kgMatysiak
31
71 kgBouglas
32
71 kgFeng
37
68 kgFukuda
39
70 kgWu
40
68 kgMukaigawa
42
64 kgBeuchat
44
62 kgShushemoin
49
62 kgLisowicz
58
85 kgKiendyś
63
78 kgSuzuki
65
60 kgUchima
76
63 kgBodnar
87
68 kgSuzuki
88
57 kg
Weight (KG) →
Result →
85
57
2
88
# | Rider | Weight (KG) |
---|---|---|
2 | NISHITANI Taiji | 62 |
7 | HANSON Ken | 74 |
10 | WONG Kam-Po | 65 |
13 | TANG Wang Yip | 62 |
15 | SALEH Mohd Zamri | 58 |
19 | TSUJI Yoshimitsu | 62 |
28 | GRUZDEV Dmitriy | 78 |
31 | MATYSIAK Bartłomiej | 71 |
32 | BOUGLAS Georgios | 71 |
37 | FENG Chun Kai | 68 |
39 | FUKUDA Shinpei | 70 |
40 | WU Kin San | 68 |
42 | MUKAIGAWA Naoki | 64 |
44 | BEUCHAT Roger | 62 |
49 | SHUSHEMOIN Alexandr | 62 |
58 | LISOWICZ Tomasz | 85 |
63 | KIENDYŚ Tomasz | 78 |
65 | SUZUKI Shinri | 60 |
76 | UCHIMA Kohei | 63 |
87 | BODNAR Łukasz | 68 |
88 | SUZUKI Yuzuru | 57 |