Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
McCann
1
73 kgGaimon
2
67 kgClarke
3
81 kgMiyazawa
4
61 kgFeng
7
68 kgBeuchat
9
62 kgChoi
10
59 kgSuzuki
11
57 kgWu
18
68 kgWong
21
65 kgUchima
27
63 kgHonkisz
35
61 kgKiendyś
37
78 kgMatysiak
39
71 kgHaas
40
71 kgWacker
45
65 kgFukuda
51
70 kgEarle
53
70 kgShimizu
55
60 kgOjavee
61
80 kgFukushima
63
62 kgKirsipuu
77
80 kgSuzuki
82
60 kgNishitani
83
62 kg
1
73 kgGaimon
2
67 kgClarke
3
81 kgMiyazawa
4
61 kgFeng
7
68 kgBeuchat
9
62 kgChoi
10
59 kgSuzuki
11
57 kgWu
18
68 kgWong
21
65 kgUchima
27
63 kgHonkisz
35
61 kgKiendyś
37
78 kgMatysiak
39
71 kgHaas
40
71 kgWacker
45
65 kgFukuda
51
70 kgEarle
53
70 kgShimizu
55
60 kgOjavee
61
80 kgFukushima
63
62 kgKirsipuu
77
80 kgSuzuki
82
60 kgNishitani
83
62 kg
Weight (KG) →
Result →
81
57
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | MCCANN David | 73 |
2 | GAIMON Phillip | 67 |
3 | CLARKE Will | 81 |
4 | MIYAZAWA Takashi | 61 |
7 | FENG Chun Kai | 68 |
9 | BEUCHAT Roger | 62 |
10 | CHOI Ki Ho | 59 |
11 | SUZUKI Yuzuru | 57 |
18 | WU Kin San | 68 |
21 | WONG Kam-Po | 65 |
27 | UCHIMA Kohei | 63 |
35 | HONKISZ Adrian | 61 |
37 | KIENDYŚ Tomasz | 78 |
39 | MATYSIAK Bartłomiej | 71 |
40 | HAAS Nathan | 71 |
45 | WACKER Eugen | 65 |
51 | FUKUDA Shinpei | 70 |
53 | EARLE Nathan | 70 |
55 | SHIMIZU Miyataka | 60 |
61 | OJAVEE Mart | 80 |
63 | FUKUSHIMA Shinichi | 62 |
77 | KIRSIPUU Jaan | 80 |
82 | SUZUKI Shinri | 60 |
83 | NISHITANI Taiji | 62 |