Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
McCann
1
73 kgClarke
2
81 kgGaimon
3
67 kgFeng
4
68 kgMiyazawa
6
61 kgBeuchat
8
62 kgChoi
9
59 kgOjavee
13
80 kgSuzuki
18
57 kgWu
23
68 kgWong
27
65 kgUchima
37
63 kgWacker
44
65 kgHaas
49
71 kgHonkisz
60
61 kgMatysiak
62
71 kgKiendyś
63
78 kgFukuda
77
70 kgKirsipuu
78
80 kgFukushima
82
62 kgSuzuki
83
60 kgNishitani
89
62 kgShimizu
90
60 kgEarle
95
70 kg
1
73 kgClarke
2
81 kgGaimon
3
67 kgFeng
4
68 kgMiyazawa
6
61 kgBeuchat
8
62 kgChoi
9
59 kgOjavee
13
80 kgSuzuki
18
57 kgWu
23
68 kgWong
27
65 kgUchima
37
63 kgWacker
44
65 kgHaas
49
71 kgHonkisz
60
61 kgMatysiak
62
71 kgKiendyś
63
78 kgFukuda
77
70 kgKirsipuu
78
80 kgFukushima
82
62 kgSuzuki
83
60 kgNishitani
89
62 kgShimizu
90
60 kgEarle
95
70 kg
Weight (KG) →
Result →
81
57
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | MCCANN David | 73 |
2 | CLARKE Will | 81 |
3 | GAIMON Phillip | 67 |
4 | FENG Chun Kai | 68 |
6 | MIYAZAWA Takashi | 61 |
8 | BEUCHAT Roger | 62 |
9 | CHOI Ki Ho | 59 |
13 | OJAVEE Mart | 80 |
18 | SUZUKI Yuzuru | 57 |
23 | WU Kin San | 68 |
27 | WONG Kam-Po | 65 |
37 | UCHIMA Kohei | 63 |
44 | WACKER Eugen | 65 |
49 | HAAS Nathan | 71 |
60 | HONKISZ Adrian | 61 |
62 | MATYSIAK Bartłomiej | 71 |
63 | KIENDYŚ Tomasz | 78 |
77 | FUKUDA Shinpei | 70 |
78 | KIRSIPUU Jaan | 80 |
82 | FUKUSHIMA Shinichi | 62 |
83 | SUZUKI Shinri | 60 |
89 | NISHITANI Taiji | 62 |
90 | SHIMIZU Miyataka | 60 |
95 | EARLE Nathan | 70 |