Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 34
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Shimizu
1
60 kgWong
2
65 kgMiyazawa
5
61 kgWacker
14
65 kgWu
17
68 kgKirsipuu
22
80 kgMcCann
23
73 kgSuzuki
32
57 kgMatysiak
33
71 kgFeng
34
68 kgUchima
41
63 kgBeuchat
42
62 kgGaimon
43
67 kgChoi
45
59 kgClarke
47
81 kgOjavee
52
80 kgHonkisz
57
61 kgHaas
60
71 kgKiendyś
63
78 kgFukuda
73
70 kgNishitani
79
62 kgSuzuki
84
60 kgEarle
89
70 kgFukushima
95
62 kg
1
60 kgWong
2
65 kgMiyazawa
5
61 kgWacker
14
65 kgWu
17
68 kgKirsipuu
22
80 kgMcCann
23
73 kgSuzuki
32
57 kgMatysiak
33
71 kgFeng
34
68 kgUchima
41
63 kgBeuchat
42
62 kgGaimon
43
67 kgChoi
45
59 kgClarke
47
81 kgOjavee
52
80 kgHonkisz
57
61 kgHaas
60
71 kgKiendyś
63
78 kgFukuda
73
70 kgNishitani
79
62 kgSuzuki
84
60 kgEarle
89
70 kgFukushima
95
62 kg
Weight (KG) →
Result →
81
57
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | SHIMIZU Miyataka | 60 |
2 | WONG Kam-Po | 65 |
5 | MIYAZAWA Takashi | 61 |
14 | WACKER Eugen | 65 |
17 | WU Kin San | 68 |
22 | KIRSIPUU Jaan | 80 |
23 | MCCANN David | 73 |
32 | SUZUKI Yuzuru | 57 |
33 | MATYSIAK Bartłomiej | 71 |
34 | FENG Chun Kai | 68 |
41 | UCHIMA Kohei | 63 |
42 | BEUCHAT Roger | 62 |
43 | GAIMON Phillip | 67 |
45 | CHOI Ki Ho | 59 |
47 | CLARKE Will | 81 |
52 | OJAVEE Mart | 80 |
57 | HONKISZ Adrian | 61 |
60 | HAAS Nathan | 71 |
63 | KIENDYŚ Tomasz | 78 |
73 | FUKUDA Shinpei | 70 |
79 | NISHITANI Taiji | 62 |
84 | SUZUKI Shinri | 60 |
89 | EARLE Nathan | 70 |
95 | FUKUSHIMA Shinichi | 62 |