Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 31
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Miyazawa
1
61 kgSuzuki
2
60 kgBeuchat
5
62 kgHonkisz
10
61 kgMcCann
11
73 kgUchima
14
63 kgWong
15
65 kgClarke
16
81 kgSuzuki
17
57 kgChoi
18
59 kgGaimon
20
67 kgFeng
25
68 kgFukuda
35
70 kgOjavee
36
80 kgEarle
40
70 kgKiendyś
46
78 kgWu
50
68 kgShimizu
54
60 kgWacker
55
65 kgHaas
67
71 kgMatysiak
78
71 kgFukushima
82
62 kgKirsipuu
83
80 kgNishitani
86
62 kg
1
61 kgSuzuki
2
60 kgBeuchat
5
62 kgHonkisz
10
61 kgMcCann
11
73 kgUchima
14
63 kgWong
15
65 kgClarke
16
81 kgSuzuki
17
57 kgChoi
18
59 kgGaimon
20
67 kgFeng
25
68 kgFukuda
35
70 kgOjavee
36
80 kgEarle
40
70 kgKiendyś
46
78 kgWu
50
68 kgShimizu
54
60 kgWacker
55
65 kgHaas
67
71 kgMatysiak
78
71 kgFukushima
82
62 kgKirsipuu
83
80 kgNishitani
86
62 kg
Weight (KG) →
Result →
81
57
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | MIYAZAWA Takashi | 61 |
2 | SUZUKI Shinri | 60 |
5 | BEUCHAT Roger | 62 |
10 | HONKISZ Adrian | 61 |
11 | MCCANN David | 73 |
14 | UCHIMA Kohei | 63 |
15 | WONG Kam-Po | 65 |
16 | CLARKE Will | 81 |
17 | SUZUKI Yuzuru | 57 |
18 | CHOI Ki Ho | 59 |
20 | GAIMON Phillip | 67 |
25 | FENG Chun Kai | 68 |
35 | FUKUDA Shinpei | 70 |
36 | OJAVEE Mart | 80 |
40 | EARLE Nathan | 70 |
46 | KIENDYŚ Tomasz | 78 |
50 | WU Kin San | 68 |
54 | SHIMIZU Miyataka | 60 |
55 | WACKER Eugen | 65 |
67 | HAAS Nathan | 71 |
78 | MATYSIAK Bartłomiej | 71 |
82 | FUKUSHIMA Shinichi | 62 |
83 | KIRSIPUU Jaan | 80 |
86 | NISHITANI Taiji | 62 |