Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Miyazawa
1
61 kgMatysiak
2
71 kgShimizu
3
60 kgKirsipuu
5
80 kgMcCann
9
73 kgClarke
13
81 kgChoi
14
59 kgSuzuki
15
57 kgSuzuki
27
60 kgBeuchat
36
62 kgOjavee
39
80 kgWong
40
65 kgGaimon
42
67 kgFeng
44
68 kgWacker
47
65 kgHonkisz
53
61 kgWu
56
68 kgFukuda
64
70 kgFukushima
70
62 kgKiendyś
78
78 kgEarle
80
70 kgHaas
81
71 kgUchima
86
63 kgNishitani
89
62 kg
1
61 kgMatysiak
2
71 kgShimizu
3
60 kgKirsipuu
5
80 kgMcCann
9
73 kgClarke
13
81 kgChoi
14
59 kgSuzuki
15
57 kgSuzuki
27
60 kgBeuchat
36
62 kgOjavee
39
80 kgWong
40
65 kgGaimon
42
67 kgFeng
44
68 kgWacker
47
65 kgHonkisz
53
61 kgWu
56
68 kgFukuda
64
70 kgFukushima
70
62 kgKiendyś
78
78 kgEarle
80
70 kgHaas
81
71 kgUchima
86
63 kgNishitani
89
62 kg
Weight (KG) →
Result →
81
57
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | MIYAZAWA Takashi | 61 |
2 | MATYSIAK Bartłomiej | 71 |
3 | SHIMIZU Miyataka | 60 |
5 | KIRSIPUU Jaan | 80 |
9 | MCCANN David | 73 |
13 | CLARKE Will | 81 |
14 | CHOI Ki Ho | 59 |
15 | SUZUKI Yuzuru | 57 |
27 | SUZUKI Shinri | 60 |
36 | BEUCHAT Roger | 62 |
39 | OJAVEE Mart | 80 |
40 | WONG Kam-Po | 65 |
42 | GAIMON Phillip | 67 |
44 | FENG Chun Kai | 68 |
47 | WACKER Eugen | 65 |
53 | HONKISZ Adrian | 61 |
56 | WU Kin San | 68 |
64 | FUKUDA Shinpei | 70 |
70 | FUKUSHIMA Shinichi | 62 |
78 | KIENDYŚ Tomasz | 78 |
80 | EARLE Nathan | 70 |
81 | HAAS Nathan | 71 |
86 | UCHIMA Kohei | 63 |
89 | NISHITANI Taiji | 62 |