Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 33
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Miyazawa
2
61 kgSuzuki
3
60 kgMatysiak
4
71 kgWong
5
65 kgBeuchat
12
62 kgSuzuki
14
57 kgWu
15
68 kgMcCann
20
73 kgGaimon
23
67 kgFeng
24
68 kgChoi
27
59 kgHaas
29
71 kgKiendyś
37
78 kgEarle
38
70 kgHonkisz
39
61 kgUchima
40
63 kgNishitani
42
62 kgClarke
44
81 kgFukuda
59
70 kgOjavee
61
80 kgFukushima
67
62 kgWacker
70
65 kgShimizu
75
60 kgKirsipuu
81
80 kg
2
61 kgSuzuki
3
60 kgMatysiak
4
71 kgWong
5
65 kgBeuchat
12
62 kgSuzuki
14
57 kgWu
15
68 kgMcCann
20
73 kgGaimon
23
67 kgFeng
24
68 kgChoi
27
59 kgHaas
29
71 kgKiendyś
37
78 kgEarle
38
70 kgHonkisz
39
61 kgUchima
40
63 kgNishitani
42
62 kgClarke
44
81 kgFukuda
59
70 kgOjavee
61
80 kgFukushima
67
62 kgWacker
70
65 kgShimizu
75
60 kgKirsipuu
81
80 kg
Weight (KG) →
Result →
81
57
2
81
# | Rider | Weight (KG) |
---|---|---|
2 | MIYAZAWA Takashi | 61 |
3 | SUZUKI Shinri | 60 |
4 | MATYSIAK Bartłomiej | 71 |
5 | WONG Kam-Po | 65 |
12 | BEUCHAT Roger | 62 |
14 | SUZUKI Yuzuru | 57 |
15 | WU Kin San | 68 |
20 | MCCANN David | 73 |
23 | GAIMON Phillip | 67 |
24 | FENG Chun Kai | 68 |
27 | CHOI Ki Ho | 59 |
29 | HAAS Nathan | 71 |
37 | KIENDYŚ Tomasz | 78 |
38 | EARLE Nathan | 70 |
39 | HONKISZ Adrian | 61 |
40 | UCHIMA Kohei | 63 |
42 | NISHITANI Taiji | 62 |
44 | CLARKE Will | 81 |
59 | FUKUDA Shinpei | 70 |
61 | OJAVEE Mart | 80 |
67 | FUKUSHIMA Shinichi | 62 |
70 | WACKER Eugen | 65 |
75 | SHIMIZU Miyataka | 60 |
81 | KIRSIPUU Jaan | 80 |