Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 50
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Miyazawa
4
61 kgSuzuki
8
60 kgWong
9
65 kgMatysiak
10
71 kgShimizu
13
60 kgBeuchat
16
62 kgWacker
18
65 kgMcCann
21
73 kgWu
25
68 kgFeng
26
68 kgClarke
27
81 kgEarle
34
70 kgGaimon
36
67 kgFukushima
37
62 kgSuzuki
40
57 kgHaas
47
71 kgChoi
49
59 kgUchima
51
63 kgHonkisz
59
61 kgKiendyś
60
78 kgFukuda
61
70 kgNishitani
62
62 kgOjavee
82
80 kgKirsipuu
83
80 kg
4
61 kgSuzuki
8
60 kgWong
9
65 kgMatysiak
10
71 kgShimizu
13
60 kgBeuchat
16
62 kgWacker
18
65 kgMcCann
21
73 kgWu
25
68 kgFeng
26
68 kgClarke
27
81 kgEarle
34
70 kgGaimon
36
67 kgFukushima
37
62 kgSuzuki
40
57 kgHaas
47
71 kgChoi
49
59 kgUchima
51
63 kgHonkisz
59
61 kgKiendyś
60
78 kgFukuda
61
70 kgNishitani
62
62 kgOjavee
82
80 kgKirsipuu
83
80 kg
Weight (KG) →
Result →
81
57
4
83
# | Rider | Weight (KG) |
---|---|---|
4 | MIYAZAWA Takashi | 61 |
8 | SUZUKI Shinri | 60 |
9 | WONG Kam-Po | 65 |
10 | MATYSIAK Bartłomiej | 71 |
13 | SHIMIZU Miyataka | 60 |
16 | BEUCHAT Roger | 62 |
18 | WACKER Eugen | 65 |
21 | MCCANN David | 73 |
25 | WU Kin San | 68 |
26 | FENG Chun Kai | 68 |
27 | CLARKE Will | 81 |
34 | EARLE Nathan | 70 |
36 | GAIMON Phillip | 67 |
37 | FUKUSHIMA Shinichi | 62 |
40 | SUZUKI Yuzuru | 57 |
47 | HAAS Nathan | 71 |
49 | CHOI Ki Ho | 59 |
51 | UCHIMA Kohei | 63 |
59 | HONKISZ Adrian | 61 |
60 | KIENDYŚ Tomasz | 78 |
61 | FUKUDA Shinpei | 70 |
62 | NISHITANI Taiji | 62 |
82 | OJAVEE Mart | 80 |
83 | KIRSIPUU Jaan | 80 |