Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Fukushima
2
62 kgKirsipuu
11
80 kgMcCann
14
73 kgWong
16
65 kgMiyazawa
19
61 kgChoi
22
59 kgSuzuki
23
57 kgClarke
25
81 kgMatysiak
30
71 kgFukuda
32
70 kgWacker
36
65 kgKiendyś
38
78 kgWu
43
68 kgGaimon
44
67 kgEarle
45
70 kgBeuchat
47
62 kgHonkisz
50
61 kgHaas
61
71 kgFeng
65
68 kgUchima
72
63 kgOjavee
77
80 kgShimizu
81
60 kgNishitani
82
62 kgSuzuki
83
60 kg
2
62 kgKirsipuu
11
80 kgMcCann
14
73 kgWong
16
65 kgMiyazawa
19
61 kgChoi
22
59 kgSuzuki
23
57 kgClarke
25
81 kgMatysiak
30
71 kgFukuda
32
70 kgWacker
36
65 kgKiendyś
38
78 kgWu
43
68 kgGaimon
44
67 kgEarle
45
70 kgBeuchat
47
62 kgHonkisz
50
61 kgHaas
61
71 kgFeng
65
68 kgUchima
72
63 kgOjavee
77
80 kgShimizu
81
60 kgNishitani
82
62 kgSuzuki
83
60 kg
Weight (KG) →
Result →
81
57
2
83
# | Rider | Weight (KG) |
---|---|---|
2 | FUKUSHIMA Shinichi | 62 |
11 | KIRSIPUU Jaan | 80 |
14 | MCCANN David | 73 |
16 | WONG Kam-Po | 65 |
19 | MIYAZAWA Takashi | 61 |
22 | CHOI Ki Ho | 59 |
23 | SUZUKI Yuzuru | 57 |
25 | CLARKE Will | 81 |
30 | MATYSIAK Bartłomiej | 71 |
32 | FUKUDA Shinpei | 70 |
36 | WACKER Eugen | 65 |
38 | KIENDYŚ Tomasz | 78 |
43 | WU Kin San | 68 |
44 | GAIMON Phillip | 67 |
45 | EARLE Nathan | 70 |
47 | BEUCHAT Roger | 62 |
50 | HONKISZ Adrian | 61 |
61 | HAAS Nathan | 71 |
65 | FENG Chun Kai | 68 |
72 | UCHIMA Kohei | 63 |
77 | OJAVEE Mart | 80 |
81 | SHIMIZU Miyataka | 60 |
82 | NISHITANI Taiji | 62 |
83 | SUZUKI Shinri | 60 |