Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Ávila
1
61 kgSeo
2
66 kgOkamoto
3
65 kgArashiro
4
64 kgClarke
6
68 kgKreder
7
70 kgNakane
8
55 kgOnodera
9
65 kgPellaud
10
70 kgȚvetcov
12
69 kgPacioni
13
67 kgLaas
14
76 kgSchönberger
15
64 kgZakaria
18
59 kgMarchand
19
61 kgSuzuki
21
58 kgJanssens
25
74 kgTeugels
27
64 kgVelasco
28
59 kgWilliams
32
73 kgFlórez
33
57 kgOrr
34
74 kg
1
61 kgSeo
2
66 kgOkamoto
3
65 kgArashiro
4
64 kgClarke
6
68 kgKreder
7
70 kgNakane
8
55 kgOnodera
9
65 kgPellaud
10
70 kgȚvetcov
12
69 kgPacioni
13
67 kgLaas
14
76 kgSchönberger
15
64 kgZakaria
18
59 kgMarchand
19
61 kgSuzuki
21
58 kgJanssens
25
74 kgTeugels
27
64 kgVelasco
28
59 kgWilliams
32
73 kgFlórez
33
57 kgOrr
34
74 kg
Weight (KG) →
Result →
76
55
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | ÁVILA Edwin | 61 |
2 | SEO Joon Yong | 66 |
3 | OKAMOTO Hayato | 65 |
4 | ARASHIRO Yukiya | 64 |
6 | CLARKE Jonathan | 68 |
7 | KREDER Raymond | 70 |
8 | NAKANE Hideto | 55 |
9 | ONODERA Rei | 65 |
10 | PELLAUD Simon | 70 |
12 | ȚVETCOV Serghei | 69 |
13 | PACIONI Luca | 67 |
14 | LAAS Martin | 76 |
15 | SCHÖNBERGER Sebastian | 64 |
18 | ZAKARIA Akmal Hakim | 59 |
19 | MARCHAND Gianni | 61 |
21 | SUZUKI Ryu | 58 |
25 | JANSSENS Jimmy | 74 |
27 | TEUGELS Lennert | 64 |
28 | VELASCO Simone | 59 |
32 | WILLIAMS Tyler | 73 |
33 | FLÓREZ Miguel Eduardo | 57 |
34 | ORR Robert | 74 |