Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 60
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Zaballa
1
66 kgJelloul
2
58 kgPedersen
3
62 kgChaabane
4
70 kgLagab
8
63 kgHasnaoui
18
80 kgFurlan
19
72 kgde la Fuente
21
67 kgChtioui
28
82 kgSchäfer
40
66 kgBouglas
41
71 kgBichlmann
45
72 kgSchumacher
47
71 kgSkujiņš
51
70 kgBelgasem
66
68 kgOrr
67
74 kgMetlushenko
68
82 kgKal
69
72 kgSayar
70
64 kgde la Parte
74
64 kgBēcis
77
82 kg
1
66 kgJelloul
2
58 kgPedersen
3
62 kgChaabane
4
70 kgLagab
8
63 kgHasnaoui
18
80 kgFurlan
19
72 kgde la Fuente
21
67 kgChtioui
28
82 kgSchäfer
40
66 kgBouglas
41
71 kgBichlmann
45
72 kgSchumacher
47
71 kgSkujiņš
51
70 kgBelgasem
66
68 kgOrr
67
74 kgMetlushenko
68
82 kgKal
69
72 kgSayar
70
64 kgde la Parte
74
64 kgBēcis
77
82 kg
Weight (KG) →
Result →
82
58
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | ZABALLA Constantino | 66 |
2 | JELLOUL Adil | 58 |
3 | PEDERSEN Martin | 62 |
4 | CHAABANE Hichem | 70 |
8 | LAGAB Azzedine | 63 |
18 | HASNAOUI Maher | 80 |
19 | FURLAN Angelo | 72 |
21 | DE LA FUENTE David | 67 |
28 | CHTIOUI Rafaâ | 82 |
40 | SCHÄFER Timo | 66 |
41 | BOUGLAS Georgios | 71 |
45 | BICHLMANN Daniel | 72 |
47 | SCHUMACHER Stefan | 71 |
51 | SKUJIŅŠ Toms | 70 |
66 | BELGASEM Ahmed Youssef | 68 |
67 | ORR Robert | 74 |
68 | METLUSHENKO Yuri | 82 |
69 | KAL Miraç | 72 |
70 | SAYAR Mustafa | 64 |
74 | DE LA PARTE Víctor | 64 |
77 | BĒCIS Armands | 82 |