Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Metlushenko
3
82 kgBouglas
5
71 kgJelloul
6
58 kgBēcis
9
82 kgZaballa
13
66 kgBichlmann
15
72 kgHasnaoui
19
80 kgPedersen
23
62 kgBelgasem
27
68 kgLagab
31
63 kgChaabane
38
70 kgSchumacher
40
71 kgKal
43
72 kgde la Parte
51
64 kgde la Fuente
55
67 kgSchäfer
57
66 kgSkujiņš
58
70 kgChtioui
61
82 kgOrr
62
74 kgFurlan
70
72 kg
3
82 kgBouglas
5
71 kgJelloul
6
58 kgBēcis
9
82 kgZaballa
13
66 kgBichlmann
15
72 kgHasnaoui
19
80 kgPedersen
23
62 kgBelgasem
27
68 kgLagab
31
63 kgChaabane
38
70 kgSchumacher
40
71 kgKal
43
72 kgde la Parte
51
64 kgde la Fuente
55
67 kgSchäfer
57
66 kgSkujiņš
58
70 kgChtioui
61
82 kgOrr
62
74 kgFurlan
70
72 kg
Weight (KG) →
Result →
82
58
3
70
# | Rider | Weight (KG) |
---|---|---|
3 | METLUSHENKO Yuri | 82 |
5 | BOUGLAS Georgios | 71 |
6 | JELLOUL Adil | 58 |
9 | BĒCIS Armands | 82 |
13 | ZABALLA Constantino | 66 |
15 | BICHLMANN Daniel | 72 |
19 | HASNAOUI Maher | 80 |
23 | PEDERSEN Martin | 62 |
27 | BELGASEM Ahmed Youssef | 68 |
31 | LAGAB Azzedine | 63 |
38 | CHAABANE Hichem | 70 |
40 | SCHUMACHER Stefan | 71 |
43 | KAL Miraç | 72 |
51 | DE LA PARTE Víctor | 64 |
55 | DE LA FUENTE David | 67 |
57 | SCHÄFER Timo | 66 |
58 | SKUJIŅŠ Toms | 70 |
61 | CHTIOUI Rafaâ | 82 |
62 | ORR Robert | 74 |
70 | FURLAN Angelo | 72 |