Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Kirsipuu
1
80 kgMichaelsen
2
79 kgMillar
3
79 kgChanteur
4
62 kgCapelle
5
75 kgKonečný
6
67 kgMoncassin
7
73 kgJalabert
9
68 kgNazon
10
68 kgDe Waele
13
62 kgBeeckman
14
66 kgCorvers
16
77 kgLangella
19
76 kgFlickinger
20
78 kgPretot
21
71 kgVansevenant
22
65 kgMarichal
23
72 kg
1
80 kgMichaelsen
2
79 kgMillar
3
79 kgChanteur
4
62 kgCapelle
5
75 kgKonečný
6
67 kgMoncassin
7
73 kgJalabert
9
68 kgNazon
10
68 kgDe Waele
13
62 kgBeeckman
14
66 kgCorvers
16
77 kgLangella
19
76 kgFlickinger
20
78 kgPretot
21
71 kgVansevenant
22
65 kgMarichal
23
72 kg
Weight (KG) →
Result →
80
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | KIRSIPUU Jaan | 80 |
2 | MICHAELSEN Lars | 79 |
3 | MILLAR David | 79 |
4 | CHANTEUR Pascal | 62 |
5 | CAPELLE Ludovic | 75 |
6 | KONEČNÝ Tomáš | 67 |
7 | MONCASSIN Frédéric | 73 |
9 | JALABERT Nicolas | 68 |
10 | NAZON Damien | 68 |
13 | DE WAELE Fabien | 62 |
14 | BEECKMAN Koen | 66 |
16 | CORVERS Frank | 77 |
19 | LANGELLA Anthony | 76 |
20 | FLICKINGER Andy | 78 |
21 | PRETOT Arnaud | 71 |
22 | VANSEVENANT Wim | 65 |
23 | MARICHAL Thierry | 72 |