Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Rous
1
70 kgSalmon
2
60 kgHalgand
3
67 kgCapelle
4
75 kgMagnien
5
68 kgNazon
6
68 kgKirsipuu
7
80 kgGarrido
8
70 kgMartín Perdiguero
9
63 kgSánchez
11
65 kgAuger
14
78 kgGardeyn
15
75 kgNoval
16
71 kgPerque
17
78 kgBrochard
18
68 kgCapelle
19
73 kgPower
21
68 kgGerrikagoitia
23
63 kgHeulot
24
69 kg
1
70 kgSalmon
2
60 kgHalgand
3
67 kgCapelle
4
75 kgMagnien
5
68 kgNazon
6
68 kgKirsipuu
7
80 kgGarrido
8
70 kgMartín Perdiguero
9
63 kgSánchez
11
65 kgAuger
14
78 kgGardeyn
15
75 kgNoval
16
71 kgPerque
17
78 kgBrochard
18
68 kgCapelle
19
73 kgPower
21
68 kgGerrikagoitia
23
63 kgHeulot
24
69 kg
Weight (KG) →
Result →
80
60
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | ROUS Didier | 70 |
2 | SALMON Benoît | 60 |
3 | HALGAND Patrice | 67 |
4 | CAPELLE Ludovic | 75 |
5 | MAGNIEN Emmanuel | 68 |
6 | NAZON Damien | 68 |
7 | KIRSIPUU Jaan | 80 |
8 | GARRIDO Martin Gerardo | 70 |
9 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
11 | SÁNCHEZ Samuel | 65 |
14 | AUGER Ludovic | 78 |
15 | GARDEYN Gorik | 75 |
16 | NOVAL Benjamín | 71 |
17 | PERQUE Franck | 78 |
18 | BROCHARD Laurent | 68 |
19 | CAPELLE Christophe | 73 |
21 | POWER Ciarán | 68 |
23 | GERRIKAGOITIA Gorka | 63 |
24 | HEULOT Stéphane | 69 |