Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.8 * weight + 604
This means that on average for every extra kilogram weight a rider loses 2.8 positions in the result.
Mattan
1
69 kgVan Hyfte
3
70 kgVandenbroucke
5
67 kgPeers
8
73 kgSunderland
990
65 kgMillar
990
79 kgBäckstedt
990
94 kgRoesems
990
81 kgD'Hollander
990
74 kgMarichal
990
72 kgChanteur
990
62 kgThijs
990
69 kgPospyeyev
990
71 kgKlöden
990
63 kgRué
990
74 kgVan de Wouwer
990
66 kgGougot
990
72 kgDemarbaix
990
64 kgBeuchat
990
62 kgSteels
990
73 kgDe Waele
990
62 kg
1
69 kgVan Hyfte
3
70 kgVandenbroucke
5
67 kgPeers
8
73 kgSunderland
990
65 kgMillar
990
79 kgBäckstedt
990
94 kgRoesems
990
81 kgD'Hollander
990
74 kgMarichal
990
72 kgChanteur
990
62 kgThijs
990
69 kgPospyeyev
990
71 kgKlöden
990
63 kgRué
990
74 kgVan de Wouwer
990
66 kgGougot
990
72 kgDemarbaix
990
64 kgBeuchat
990
62 kgSteels
990
73 kgDe Waele
990
62 kg
Weight (KG) →
Result →
94
62
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | MATTAN Nico | 69 |
3 | VAN HYFTE Paul | 70 |
5 | VANDENBROUCKE Frank | 67 |
8 | PEERS Chris | 73 |
990 | SUNDERLAND Scott | 65 |
990 | MILLAR David | 79 |
990 | BÄCKSTEDT Magnus | 94 |
990 | ROESEMS Bert | 81 |
990 | D'HOLLANDER Glenn | 74 |
990 | MARICHAL Thierry | 72 |
990 | CHANTEUR Pascal | 62 |
990 | THIJS Erwin | 69 |
990 | POSPYEYEV Kyrylo | 71 |
990 | KLÖDEN Andreas | 63 |
990 | RUÉ Gérard | 74 |
990 | VAN DE WOUWER Kurt | 66 |
990 | GOUGOT Fabrice | 72 |
990 | DEMARBAIX Sébastien | 64 |
990 | BEUCHAT Roger | 62 |
990 | STEELS Tom | 73 |
990 | DE WAELE Fabien | 62 |